

Keeping an Eye on Implant Materials

Dennis Brestovansky Technology Commercialization Director

THE INFORMATION PROVIDED IN THESE SLIDES IS FURNISHED "AS-IS", WITH ALL FAULTS AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, QUALITY, USEFULNESS, COMMERCIAL UTILITY, ADEQUACY, COMPLIANCE WITH ANY LAW, DOMESTIC OR FOREIGN, AND IMPLIED WARRANTIES ARISING FROM COURSE OF DEALING OR COURSE OF PERFORMANCE.

- Some important characteristics of Ion Implantation
- Properties of Source Materials
- Materials Handling Considerations
- Materials Choice Tradeoffs
 - Handling / Packaging
 - Supply Chain Robustness
- Influence of Source Material Choice on Cost and Performance
 - Throughput
 - Maintenance
- Overview of Materials Landscape
- Emerging Materials

Implant Process

www.semiwiki.com/forum/content/4152-ion-implant-its-not-just-doping-anymore.html

Unique Materials Supply Situation

- Toxic / flammable / corrosive materials
- Stored inside tool not remotely
- In vicinity of personnel
- Tool shutdown to change

Common Materials and Hazards

	Arsine	Phosphine	Boron Trifluoride
Phase	Liquified Compressed Gas	Liquified Compressed Gas	Compressed Gas
Hazard	Highly flammable	Highly flammable	Highly corrosive
OSHA PEL	0.05 ppm	0.3 ppm	1 ppm

- Convenient gas phase at room temperature and pressure
- Careful handling required to protect personnel and equipment
- Implanter design considerations prohibit remote storage, e.g. sub-fab

Innovative Packaging

Tradeoffs / Considerations

- Physics
 - Temperature
 - Air infiltration
 - Pressurization
- Capacity
 - Handling frequency
- Utilization
 - Cost
- Design
 - Absorptivity
 - Mixture capable

Ion Implantation Cost Factors

- Source Material Costs
 - Price per unit
 - Utilization
- Labor Costs
 - Source material change frequency
 - Tool MTTR / MTBF
- Productivity
 - Throughput
 - Ion beam current
 - Species changeover speed
 - Tool availability
 - Yield
 - Particles
 - Glitch rate / beam uniformity

R

Evolution of Implantation

- Remains an important process even with advancing nodes
- Electrical and materials modification applications
- Increasing demands on process, source materials and delivery
 - Example : Higher current = higher desired beam current
 - Example : Dedicated species operation = ion source life strain

Cost Reduction Approaches

After : www.samaterials.com

How to ?

- Reduce preventive maintenance
- Increase throughput when fab is loaded – run as fast as possible
- Minimize defects

Options:

- Increase number of tools
- Tool / Equipment modification
- Operating mode species swap
- Choice of source molecule(s)

Source molecule selection can be a "drop in" productivity enhancer

A Key Maintenance Issue

IHC Source Schematic

 $\frac{\text{Initiation}}{aXF_z + be} \rightarrow X^+ + F^+ + XFx^+ + F + X + XFy$

Etching F/F2+ W → WFy XFx + W → WFy + XFz

 $\frac{\text{Deposition}}{\text{WFy} \rightarrow \text{W} + 0.5\text{yF2}}$

X = e.g. B or Ge

- "Halogen Cycle"
- Source materials can degrade implanter components
- Eventually, ion source chamber must be repaired / replaced leading to downtime and cost

Want both long source life and beam current flexibility

Changing chemistry to reduce ion source degradation

+ 70% ion source lifetime > 230 hours

change Liner wt. change

RG = rare gas

Source Material Impact on Beam Current

• 22 to 28% better beam current while extending ion source lifetime

Enhanced Yield - Contamination

Reduced levels of W on wafer from particles+20% yield

Enhanced Yield – Dose Precision

Better beam stability through 370 hours at +20% beam current

Dopant	Baseline Material	Beam Current	Ion Source Lifetime	Mixed Mode Operation	Considerations
As	AsH3				
Ρ	PH3			PF_3	PF ₃ not as widely used in other processes
В	¹¹ BF ₃	¹¹ BF ₃ / B ₂ H ₆ / H ₂	 ¹¹BF₃ / H₂ ¹¹BF₃ / RG / H₂ ¹¹BF₃ / B₂H₆ / H₂ 		Package design
Ge	GeF ₄	 ⁷²GeF₄ GeF₄/CH₃F 	 GeF₄ / H₂ GeF₄ / RG / H₂ GeF₄ / CH₃F 		Supply chain- super highly enriched gas
С	$CO_2 + PH_3$		 CO CO / RG / H₂ 	CO/CF ₄ + RG/H ₂	Package design and material of construction
RG = rare gas					

Considerations Overview

- Best materials
 - Supply chain reliability
 - Shelf life
 - Cost
 - Packaging and handling options
- Process flexibility
 - Co-flow offers mixture flexibility
 - Mixtures can add stability and shelf life
 - Consumes potentially limited "gas sticks"
- Implanter mode
 - High current, medium current, low energy high dose
 - Dedicated vs. mixed

Possible New Implant Species

- New dopants required below 1X node
- Enhanced dosage for electrical or mechanical modification
- No clear gaseous source options yet
- New challenges for delivery, packaging, blending, etc.

Species	Molecule	Phase	
Antimony	oxide	Solid	
Anumony	trifluoride	Solid	
Aluminum	trimethyl	Low VP liquid	
Aluminum	trichloride	Solid	
Callium	oxide	Solid	
Gaillum	trimethyl	Low VP liquid	

Expanding beyond gaseous sources

