

Co & Ru Precursors Chemistry for Advanced Metallization. Challenges & Opportunities

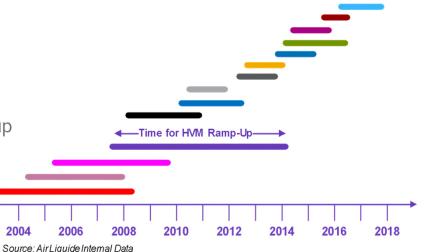
Nicolas Blasco

Critical Materials Conference, Phoenix April, 26th 2018

THIS DOCUMENT IS ••PUBLIC Owner: AL – N.Blasco

- 1. Preliminary remarks on new ALD/CVD precursors development
- 2. Insights on Co precursors chemistry
- 3. Insights on Ru precursors chemistry & selective processes

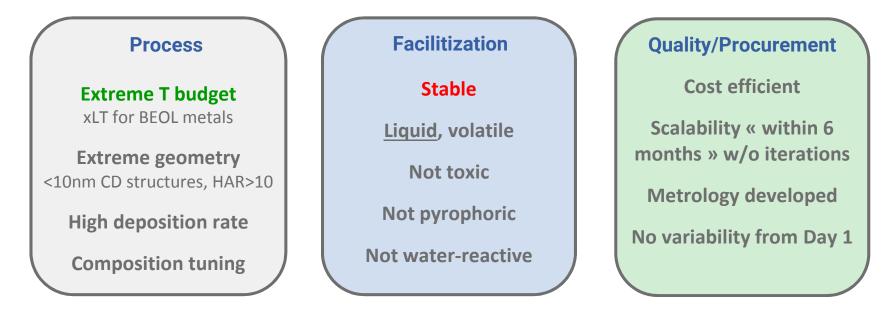
The background problem / opportunity


 Many new ALD/CVD chemicals introduced in semi industry have no applications in other industries

• Hence

- No established supply chain
- No metrology knowledge available
- o Little to no information on safety and regulatory aspects
- Uncertainty about adoption, intense R&D effort w/ limited success rate
- Uncertainty about lifecycle is it a one node material?
 - $_{\odot}$ Worst case, is it a single customer, single node material?

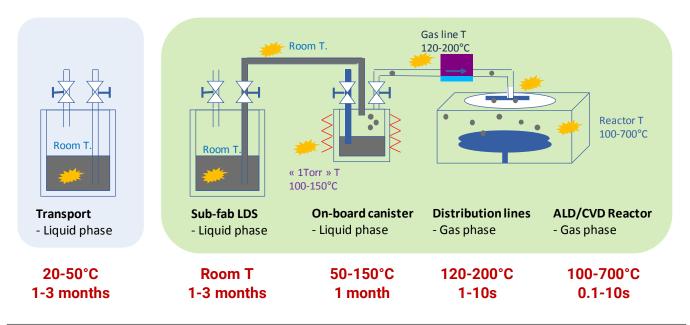
The birth of a new molecule – Time to Market


- Time to market shrunk by ~50% in the last 15 years from 4-6 to 2-3 years.
- Productization includes multiple steps
 - « High energy » synthesis reactions scale-up
 - o Metrology development
 - o EHS, physical & chemical properties
 - o Regulatory management
 - o QA/QC, SPC implementation

→ intensification of productization and concentration of 1st move players Upfront investment is required to minimize late learnings

THIS DOCI	JMENT IS "PUBLIC	I AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
4	Critical Material Conference, Phoenix	April 26 th , 2018	

The precursor design conflicts


Low stability high reactivity precursors are often required for extra Low T processes Strong impact on quality, metrology, supply chain \rightarrow strong collaboration need

THIS	DOCU	MENT I	S ••PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

From lab to wafer: the temperature journey

Less stable precursors create challenges on the full delivery chain \rightarrow Illustrations on Co & Ru chemistries for BEOL metallization

AIR LIOUIDE. THE WORLD LEADER IN GASES. TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

	distant de
U	Air Liquide
	creative oxygen

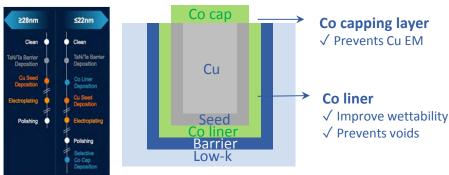
Critical Material Conference, Phoenix

THIS DOCUMENT IS "PUBLIC

6

April 26th, 2018

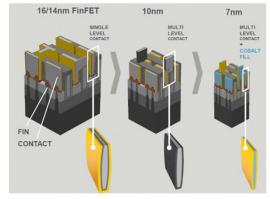
Insights on Co CVD Precursors Chemistry


THIS DOCUMENT IS ... PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Cobalt applications and requirements

BEOL Cu metallization: <22nm →



Source: Applied Materials Inc. http://www.appliedmaterials.com/products/endura-volta-cvd-cobalt

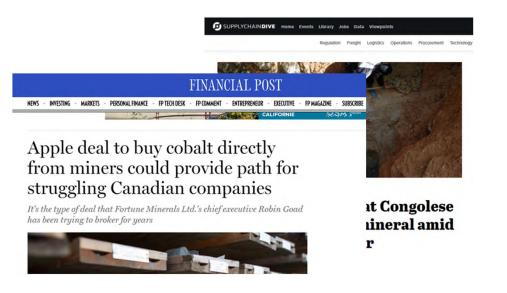
Challenges for <10nm integration

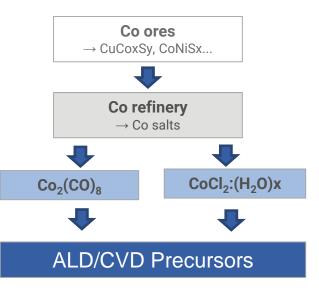
- Conformality (low stability precursors)
- Adhesion becomes more challenging
- Selectivity

MOL contact fill: <10nm \rightarrow

Source: Applied Materials Inc.

Challenges


- Conformality, void-free deposition
- Contact resistance

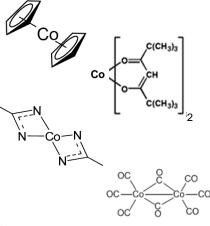

Cobalt - from mine to precursor

Cobalt mining

- 0 120,000TPY production, usually a Ni, Cu by-product
- O DRC (50%), CN, CA, US, RU....

Cobalt supply chain

THIS DOCUMENT IS -- PUBLIC

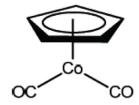

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Co precursors families options

	Physical state	Volatility	Stability	Co-metal access	
Cyclopentatienyls					Q _{Co}
β-diketonates					
Amidinates					N-Co-N
Carbonyl					
Carbonyl derivatives					



AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH


Industry examples: CCTBA and CODCP

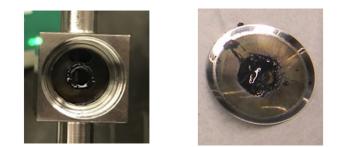
- Volatile liquid
- Co metal LT-CVD
- High Growth-rate (2 Co)
- Non selective
- No ALD window
- Limited stability

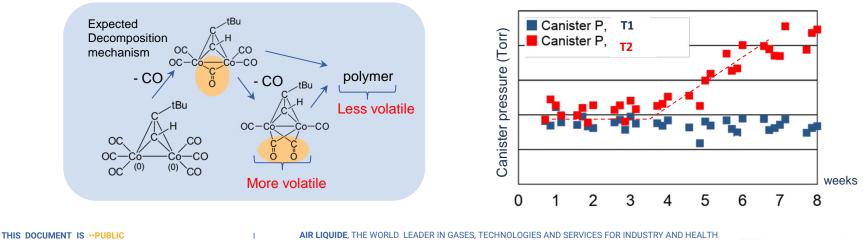
CpCo(CO)₂

- Volatile liquid

IDE. THE WORLD LEADER IN GASES. TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

- Co metal **PE**ALD
- Selective \rightarrow capping
- Good thermal stability

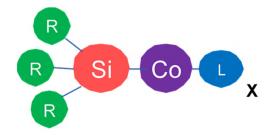



11 Critical Material Conference, Phoenix

THIS DOCUMENT IS ... PUBLIC

CCTBA – Challenges

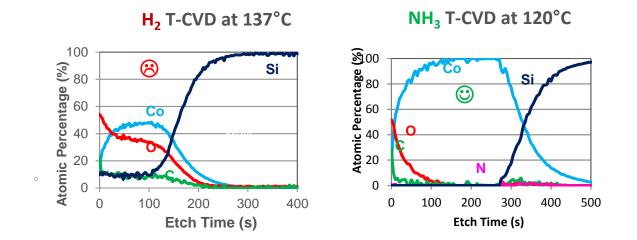
- Excellent T-CVD process performance, but....:
- In-ampoule decomposition during utilization
 - O Formation of low volatile polymers
 - o leads to in-wafer particle contamination
 - o decreases ampoule utilization efficiency



The new chemical approach – CoSine™

• Principle: thermally stable yet highly reactive bond

- o Contains a Co-Si functionality
- o Co-Si bond strength tuned by R groups
- Liquid, melting point -9°C
- o Volatile, 1Torr @ 57°C
- o Thermally stable


LEADER IN GASES. TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

THIS DOCUMENT IS

Co-reactant selection

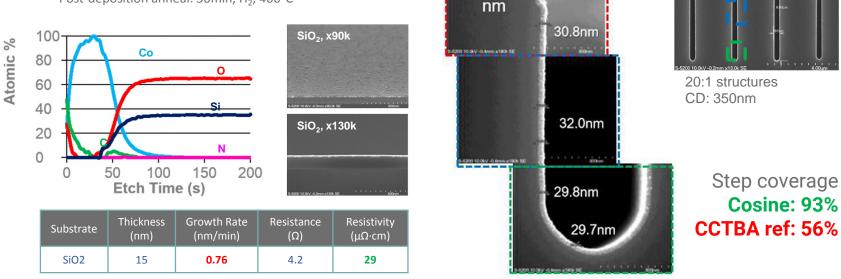
• NH₃ is require to achieve clean, Si free, film

NH₃ is optimum co-reactant / suggest to release Si as NH₂-SiR₃ Clean reaction: **N and Si below XPS detection limit**, **C ~1%**

DUIDE. THE WORLD LEADER IN GASES. TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

			S		- L -	
Q	ιн.	Ir I	IC	uı	ае	

14 Critical Material Conference, Phoenix


THIS DOCUMENT IS "PUBLIC

April 26th, 2018

Co Low Temperature CVD from Cosine[™]

◦ T-CVD w/ NH₃ at 120°C

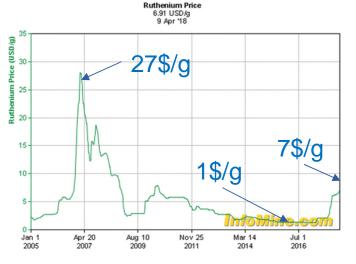
Post-deposition anneal: 30min, H₂, 400°C

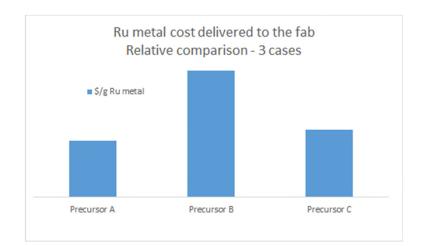
Smooth, low resistivity, conformal films obtained by LT-CVD

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

32

Insight on Ru CVD Precursors Chemistry

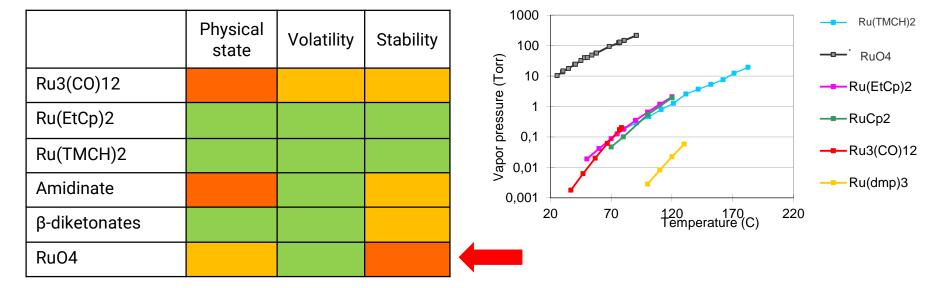

THIS DOCUMENT IS --PUBLIC


AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Ru Supply Chain Considerations

- Ru mining ~20-30Tons/year: South Africa (>>50%), Russia mainly
- O Applications in Data storage, electrical, chemical industries
- O Ru metal cost is very volatile
- O Delivered Ru function of Ru metal cost, yield, properties, ligands

THIS DOCUMENT IS --PUBLIC


AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Ru precursors families options

Ru ALD/CVD is investigated since >10years

Vapor pressure of selected Ru precursors

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Ruthenium Tetroxide - RuO₄

• Used in solution as fingerprinting agent in the 90s.

- Key challenges
 - o Low mp solid
 - o Unstable in pure form
 - o Can explosively decompose
 - o RuO4 → RuO2 + O2
- Key advantages
 - o Stable in diluted form
 - Extremely volatile (BP @ 100°C)
 - o Synthesis pathway

Latent Fingerprint Processing by Ruthenium Tetroxide Method Article in Japanese journal of science and technology for identification 2(1):21:25- January 1997 with 71 Reads DO: 10.3408/jest.2.21

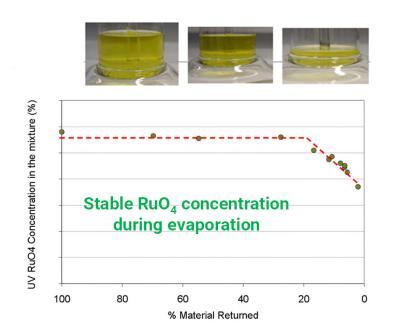
Abstract

The method studied in this paper is developing latent fingerprints based on ruthenium tetroxide (RuO4) method. Ruthenium tetroxide funning promptly react with various organic compound, particularly oils or fats contained in sebaceous secretions in latent primt and producing provinsib black or black ruthenium dioxide (RuO2). Ruthnium Tetroxide syellow, volatile crystalis (melting point, 25.5°C, boling point, 100.8°C) at room temperature. Conventional methods using RuO4 have been almost impractical because it is very difficult to handle by its strong oxidizability. Additionally because of the two liquid method, it is not only troublesome to produce RuO4 fumes immediately before developing latent fingerprints, but also is difficult to produce necessary announts of RuO4 fumes. In this method, these problems were resolved by utilizing a saturated hydrocarbon halogenid solution of RuO4

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

April 26th, 2018

TORUS™

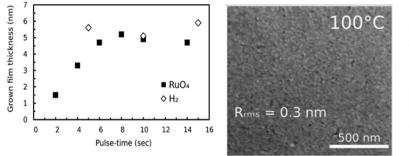

- RuO₄/solvent blend behaving as an ideal mixture and simultaneously evaporating
- Key characteristics
 - RuO₄/solvents mixture
 - o Clear yellow liquid
 - Vapor pressure 10 Torr @ 25°C
 - Boiling point
 - o Viscosity
 - \circ LC₅₀ (inh rat)
 - ToRuS is not considered a toxic substance

61-76°C

0.6cP @ 23°C

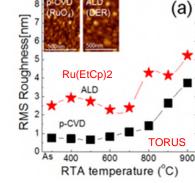
> 20 mg/L

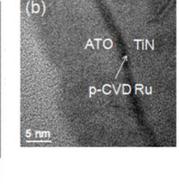
• US7906175B2, WO2006035281

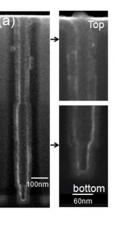

Non-flammable, non toxic, liquid solution for stable RuO₄ gas phase delivery

THIS DOC	UMENT ISPUBLIC	I AIR LIQUIDE, THE V	WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND I	HEALTH	
20	Critical Material Conference, Phoenix		April 26 th , 2018		Air Liquide
÷	· · · · · · · · · · · · · · · · · · ·		·		meanite wylden

TORUS[™] – Process Results


T-ALD @ 100°C


Pulsed-CVD @ 250°C



Minjauv et.al., J. Mater. Chem. C, 2015, 3, 132-137

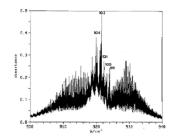
T-ALD at 100°C – GPC of 1A/cy ρ18μΩ.cm @ 18nm (at. % level 0) Excellent conformality

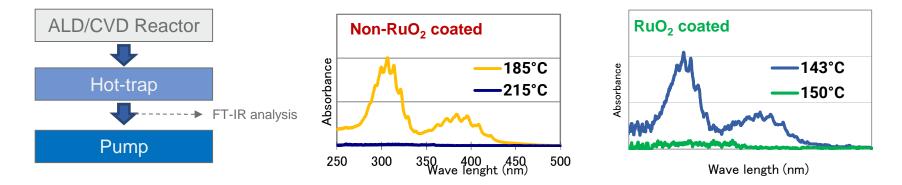
Han et al., ECS Transactions, 58 (10) 171-182 (2013)

P-CVD down to ultrathin Ru layer. p25µΩ.cm Conformality > 90% in 10:1 structures Also reported for crystalline SrRuO3 ALD

THIS DOCUMENT IS -- PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH




21 Critical Material Conference, Phoenix

RuO₄ Abatement and Recycling

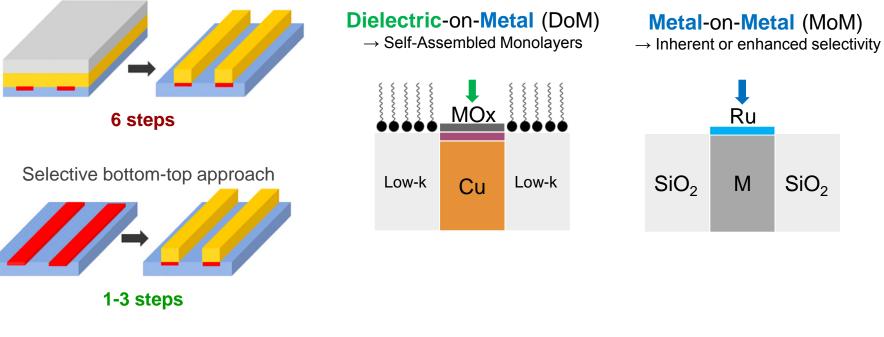
• FT-IR analysis of RuO₄ effluent downstream to a hot furnace

 \circ RuO₄ \rightarrow RuO₂ + O₂, catalysed by RuO₂

 RuO_4 can be decomposed to RuO_2 in a simple hot furnace, no co-reactant required \rightarrow Ru could be recovered as RuO_2 .

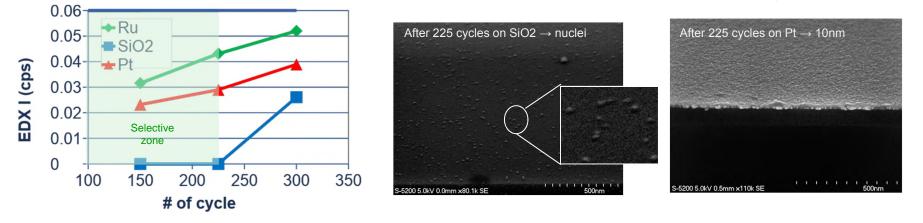
22 Critical Material Conference Decenix	THIS DOC	UMENT IS ••PUBLIC	I AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEAD	.TH
Zz Childal Material Contenence, Phoenix April 20°, 2018	22	Critical Material Conference, Phoenix	April 26 th , 2018	

Ru Selective ALD/CVD processes


THIS DOCUMENT IS ... PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

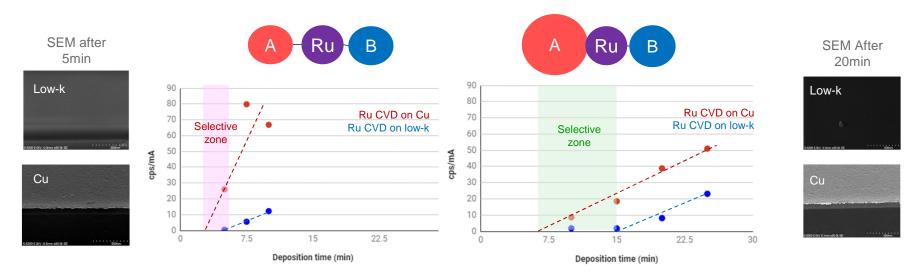
Selective Deposition


Conventional top-bottom approach

THIS DOCI	UMENT IS ••PUBLIC AIR LIQUIDE, T	HE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	-
24	Critical Material Conference, Phoenix	April 26 th , 2018	

Ru Metal-Organics – AS-ALD MoM

- Ru(II) precursor
 - O ALD w/ O_2 at 325°C « Combustion » type (same w/ Ru(EtCp)₂)
 - Bis(2,2,6,6-trimethylcyclohexadienyl)Ruthenium Ru(TMCH)₂


Ru

Good selectivity achieved 10nm Ru on Pt. Ru nucleation sites observed on SiO₂ Likely to be combined w/ ABC etch-back process to maximize contrast

THIS DOC	UMENT IS "PUBLIC I AIR	LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR	INDUSTRY AND HEALTH
25	Critical Material Conference, Phoenix	April 26 th , 2018	

Ru Metal-Organics – AS-CVD MoM

• Increasing inherent selectivity by ligand size (H₂ based CVD Ru)

Lower precursor reactivity \rightarrow increased selectivity Likely to be combined w/ ABC etch-back process to maximize contrast

THIS DOCUM	IENT IS "PUBLIC	I AIR LIQUIDE, THE V	VORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
26	Critical Material Conference, Phoenix		April 26 th , 2018	

Conclusions

• For BEOL metallization Lower stability precursors cannot be avoided in most cases.

- o Chemical innovation can address stability issue in some cases.
- o Otherwise a robust metrology and manufacturing control is required to ensure reproducibility

o Cobalt precursors chemistry

- Existing precursors have demonstrated **successful** integration down to 10-7nm nodes
- Development is still required to achieve **~nm conformal thermal ALD**

o Ruthenium precursors chemistry

- Ru ALD/CVD chemistry has been investigated since ~20+ years
- Existing options allow deposition of ~nm Ru layers by CVD/ALD w/ O₂ or H₂ co-reactants
- Ru ALD/CVD is promising for selective MoM deposition
- Challenges focused on integration

THIS DOC	UMENT IS "PUBLIC	I AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
27	Critical Material Conference, Phoeni	April 26 th , 2018	Air Liquide

THANK YOU

THIS DOCUMENT IS -- PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

