
Market Dynamics Driving Future Semiconductor Demand

Semico Research Corp. April 2018

Semico Forecast Methodology

Semico Forecasting Methodology

Strategic Overview

Analysis of key macroeconomic trends and a strategic outlook are the foundation of Semico's End-Market and semiconductor forecasts.

Semiconductor End-Markets

Semico tracks over 60 semiconductor end-markets in an interactive database designed to drive comprehensive and accurate forecasts.

Manufacturing Technology

Wafer demand and worldwide foundry capacity are factored into individual semiconductor product forecasts as well as the comprehensive industry outlook.

www.semico.com

2018:Traditional Markets Slow Growth or Declining

2018: Markets with Higher Growth Potential

Automotive 1.2% 123M

Server 18.6% 25.5M

Personal Assist 15% 30M

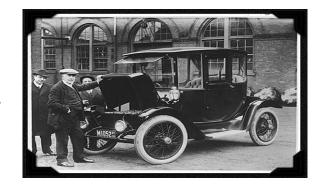
Automotive The Next Big Opportunity

Expectations in the Automotive Markets

Connected vehicles

Electrification

Self driving car



Ideas That Didn't Take Off

Automaker Albert Augustus Pope and the electric car

Thomas Edison and the nickel-iron battery for electric cars

John DeLorean failed diecast, all-aluminum engine

2004 Versus 2017 Factory Installed Equipment

	2	0	0	4
--	---	---	---	---

•	ABS	76.5%
•	Power seats	53.9%
•	Auto headlights	52.1%
•	Anti theft	47.0%
•	Side air bags	22.1%
•	Stability control	16.7%
•	Traction control	14.9%
•	Rear object sensor	6.7%
•	GPS	5.0%
•	Drive by wire	0.7%
•	Heads up	0.6%
•	Blind spot sensor	0.0%
•	Tire Pressure	1.3%

2017

•	ABS	99.0%	
•	Power seats	61.0%	
•	Auto headlights	62.1%	
•	Anti theft	99.0%	
•	Side air bags	90.0%	
•	Stability control	99.5%	
•	Traction control	23.5%	
•	Rear object sensor	85.0%	
•	GPS	38.1%	
•	Drive by wire	24.3%	
•	Heads up	5.1%	
•	Blind spot sensor	37.4%	
•	Tire Pressure	88.0%	

Advanced Automotive Systems

GPS (global positioning system

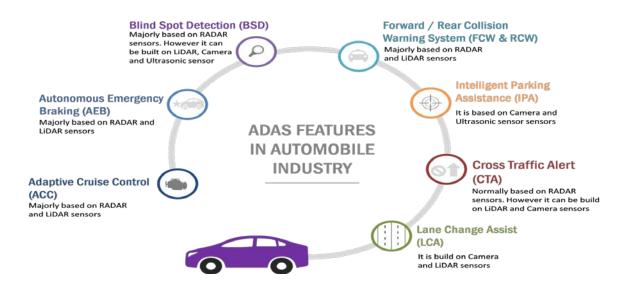
combined with readings from tachometers, altimeters and gyroscopes to provide the mo accurate positioning

Ultrasonic sensors to

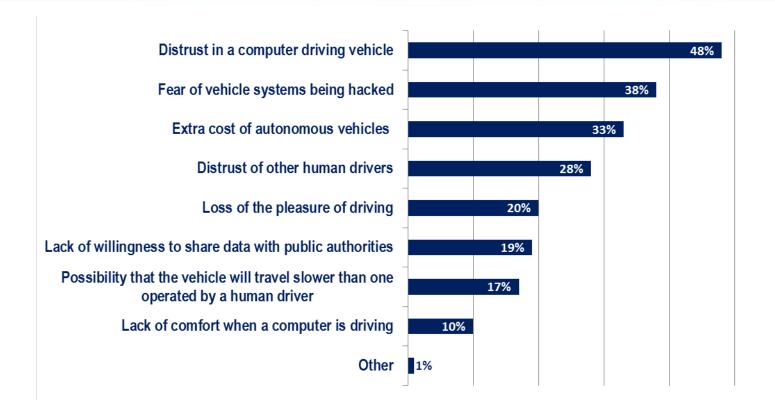
measure the position of objects very close to the vehicle

Odometry sensors to

complement and improve GPS information


Central computer analyzes applies rules of the road and oper accelerator and brakes

AUTOMOTIVE CHALLENGES


Leading-Edge Silicon for Self Driving Car

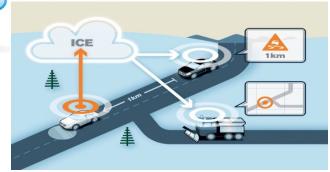
- Object Detection / Tracking
- Feature Recognition / Tracking
- 3D Scene Interpretation

Consumer Concerns About ADAS

Source: McKinsey

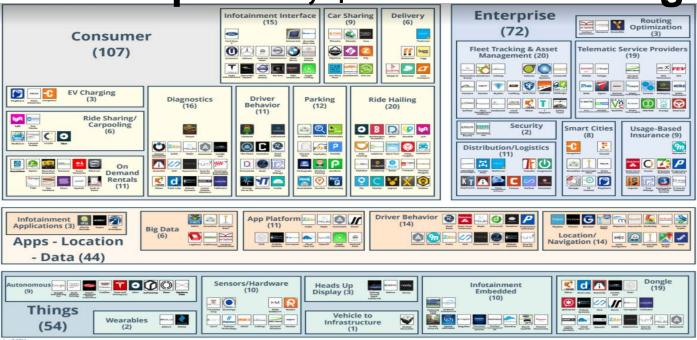
SAE Automated Vehicle Classifications

Classification	Description
Level 0:	Automated system has no vehicle control, but may issue warnings.
Level 1:	Driver must be ready to take control at any time. Automated system may include features such as Adaptive Cruise Control (ACC), Parking Assistance with automated steering, and Lane Keeping Assistance (LKA) Type II in any combination.
Level 2:	The driver is obliged to detect objects and events and respond if the automated system fails to respond properly. The automated system executes accelerating, braking, and steering. The automated system can deactivate immediately upon takeover by the driver.
Level 3:	Within known, limited environments (such as freeways), the driver can safely turn their attention away from driving tasks.
Level 4:	The automated system can control the vehicle in all but a few environments such as severe weather. The driver must enable the automated system only when it is safe to do so. When enabled, driver attention is not required.
Level 5:	Other than setting the destination and starting the system, no human intervention is required. The automatic system can drive to any location where it is legal to drive.

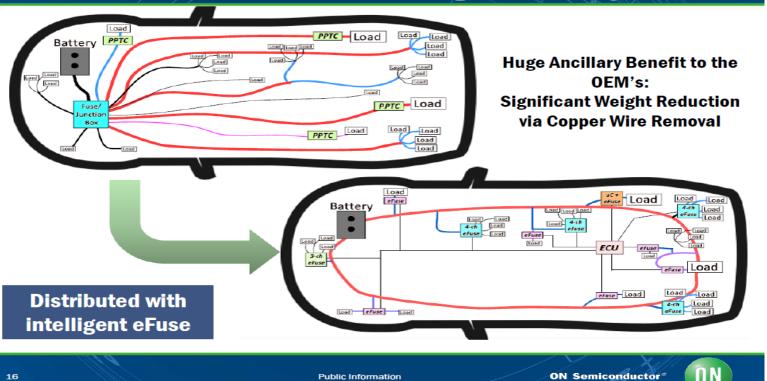

Comm Chips Another Key Opportunity

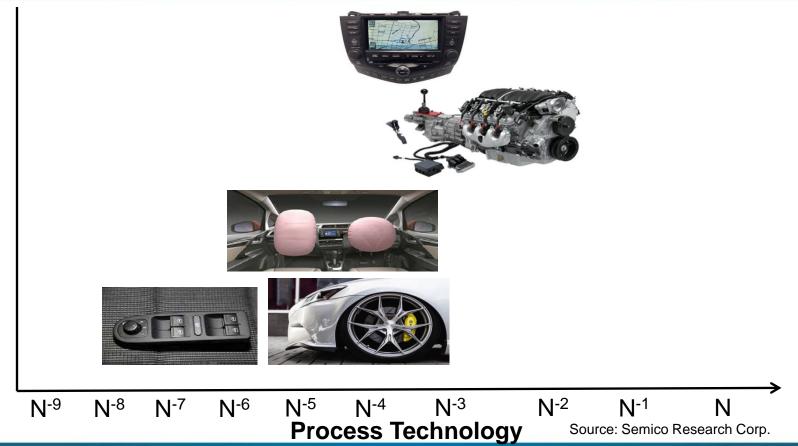
Vehicle-to-Cloud and

Vehicle-to-Vehicle

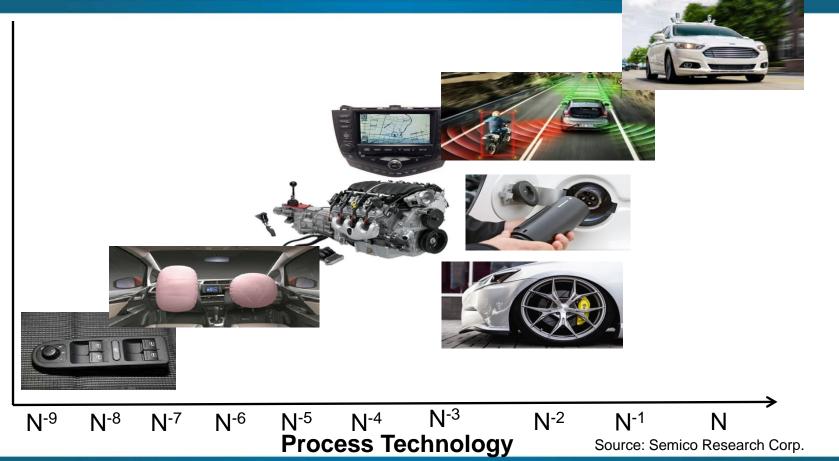


Connected Car Landscape


250 companies, \$38.7B in funding


Source: VentureBeat

New Innovations Require New Solutions


How an eFuse Reduces Weight - a Key Benefit

2004 Technology for Automotive ICs

Down the Road: Technology for Auto ICs

Self-Driving Car Timeline

• 2018

• 2021

• 2020

• 2020

• 2020, 2025

• 2021

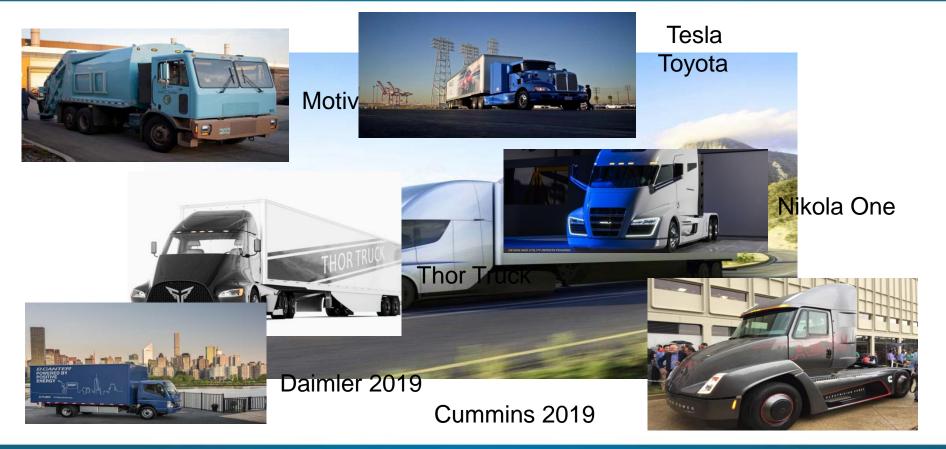
Highway 2020, Urban 2030

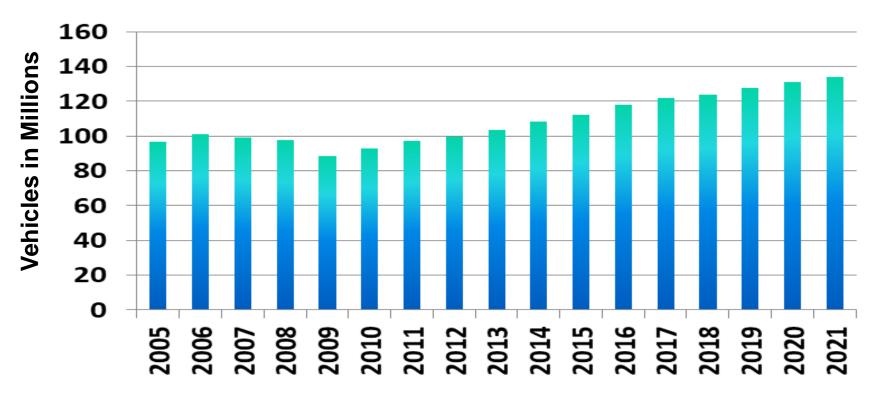
• Early 2020s

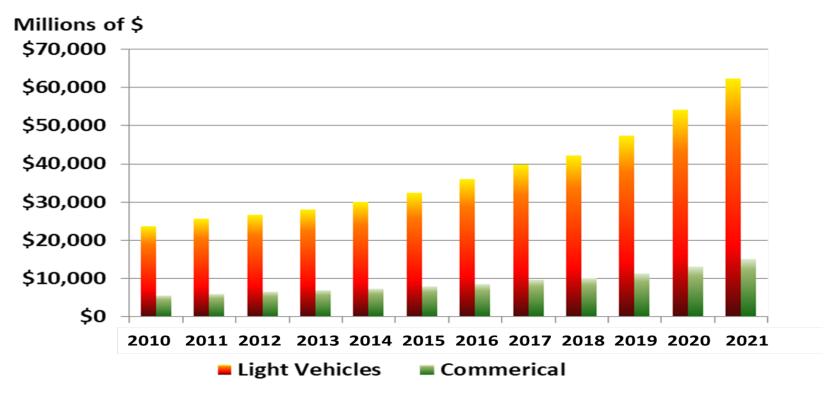
HRYSLER

• 2021

• 2021


• 2017


• 2020


Big Opportunities for Big Rigs

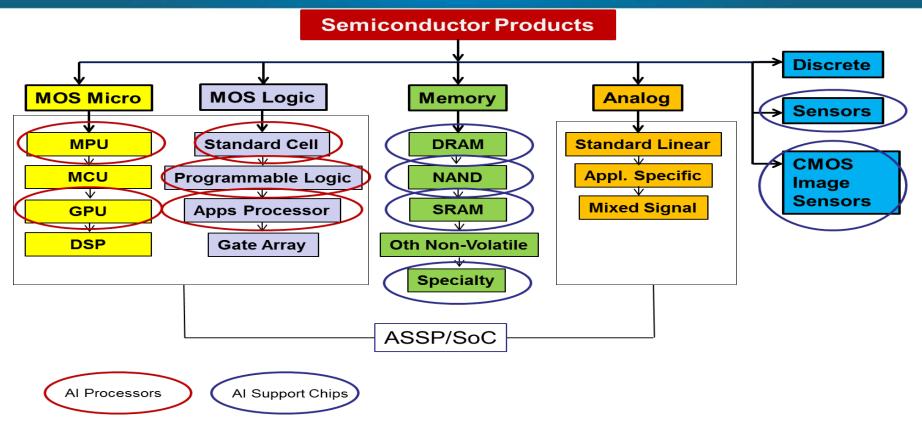
Automotive Forecast

Automotive Semiconductor Forecast

Ideas That Didn't Take Off

The 3-wheel car with rear mount V8

Car with one door in the front


Combination office and dining car

AI Intelligence Everywhere

Where is AI Today?

- Has become a focus for all companies
- Two different facets
 - > Training: run millions of data inputs through a system to recognize specific patterns
 - ➤ Inference: after training is completed, an algorithm is created to duplicate the same results
- Innovation and development is moving fast

Semiconductor Market Landscape

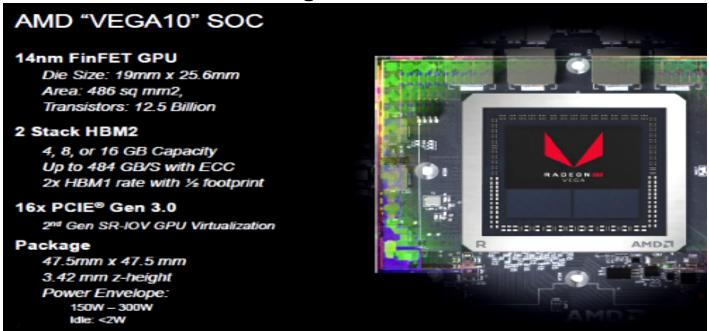
Al Architectures: Nvidia

Nvidia Volta Family

TESLA V100

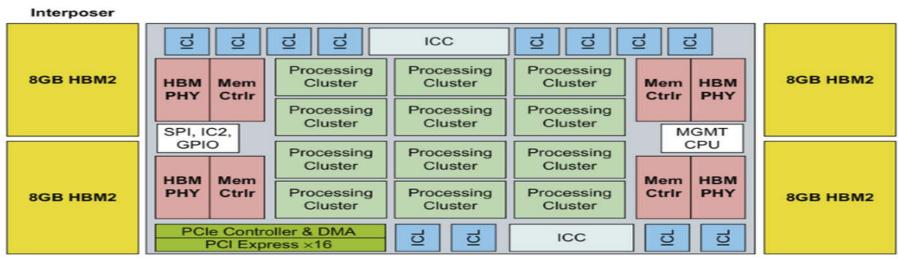
21B transistors 815 mm²

80 SM 5120 CUDA Cores 640 Tensor Cores


16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

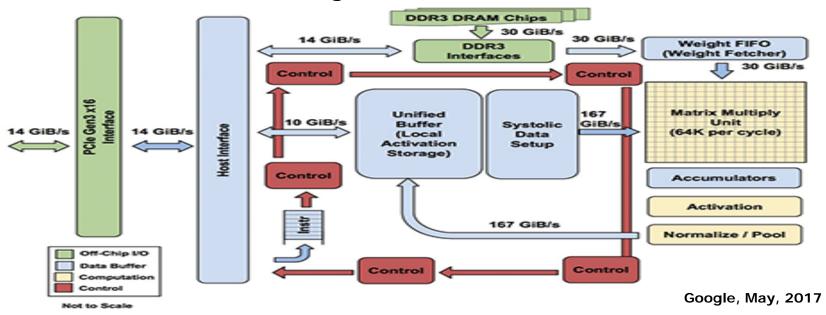
Source: NVIDIA Corp.,

AI Architectures: AMD


AMD Vega Architecture

Source: AMD

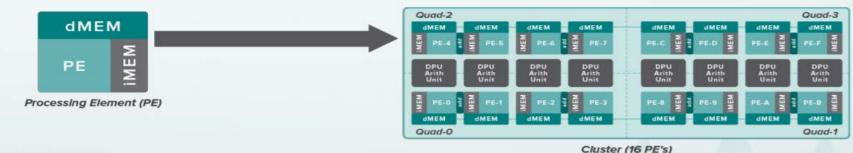
Al Architectures: Intel


Intel Nervana (Lake Crest) Deep Learning Architecture

Source: Intel Corp.

AI Architectures: Google

Google TPU Architecture


AI Architectures: Cisco

Cisco Architecture Entire packets stored on-chip during processing **Packet** Fabric Interface Storage MACs 400Gbps 400Gbps Processor array can Fabric Line access and modify entire packet content **Processor** Traffic Hardware Manager Accelerators Array Networking specific hardware accelerators Handles queuing and Examples: packet External DRAM implements features such ordering, prefix lookup, as quality of service global ALU operations. 1. counters

Source: Cisco

AI Architectures: Wave Computing

Wave Computing DPU Architecture

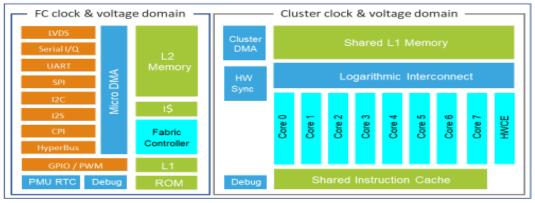
- 16 Processor CLUSTER: a full custom tiled GDSII block
- Fully-Connected PE Quads with fan-out
- 8 DPU Arithmetic Units
 - Per-cycle grouping into 8, 16, 24, 32, 64-b Operations
 - Pipelined MAC Units with (un)Signed Saturation
 - Support for floating point emulation
 - Barrel Shifter, Bit Processor
 - SIMD and MIMD instruction classes
 - Data driven

- 16KB Data RAM
- 16 Instruction RAMs
- Full custom semi-static digital circuits
- Robust PVT insensitive operation
 - Scalable to low voltages
 - No global signals, no global clocks

Source: Wave Computing

Al Architectures: ThinCl

ThinCl Architecture **thinci** Fine-Grained Thread Scheduling Thread Scheduler Aware of data dependencies Dispatches threads when: · Resources available Dependencies satisfied Instruction Unit Sedie Maintains ordered behavior as needed Prevents dead-lock **Supports Complex Scenarios** Aggregates Threads Fractures Threads


Source: ThinCI

Al Architectures: GreenWaves Technology

GreenWaves Architecture

GAP8 – An IoT Application Processor

Two independent clock and voltage domains, from 0-133MHz/1V up to 0-175MHz/1.2V

Fully programmable Efficient parallelization

model / e-fuses

MCU Function Extended RISC-V core

Micro DMA

Extensive I/O set

Efficient parallelization Shared instruction cach

8 extended RISC-V cores

HW synchronization

HW convolution Engine (3 * 3x3)

Embedded DC/DC converters

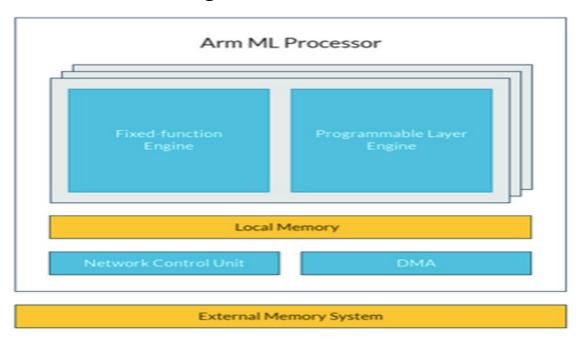
Operation and memory security

Computation engine function

An integrated, hierarchical architecture

Deep sleep 70nA Asleep

Retentive 3µA+x*8µA Acquisition 40µWs + peripheral Pre-analysis


Inference few 10mWs

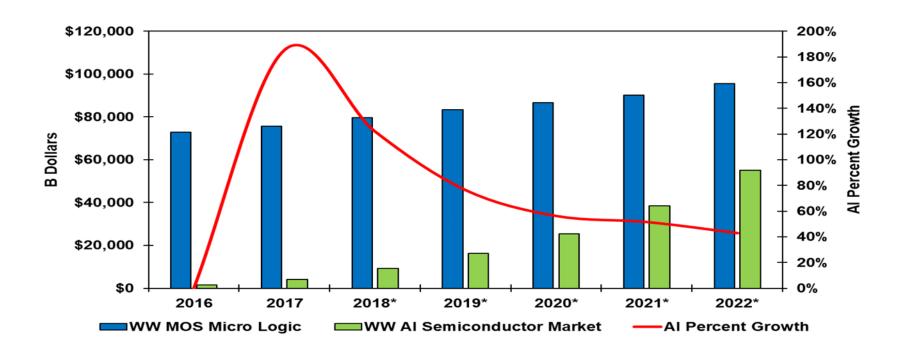
Source: GreenWaves Technology

Al Architectures: ARM

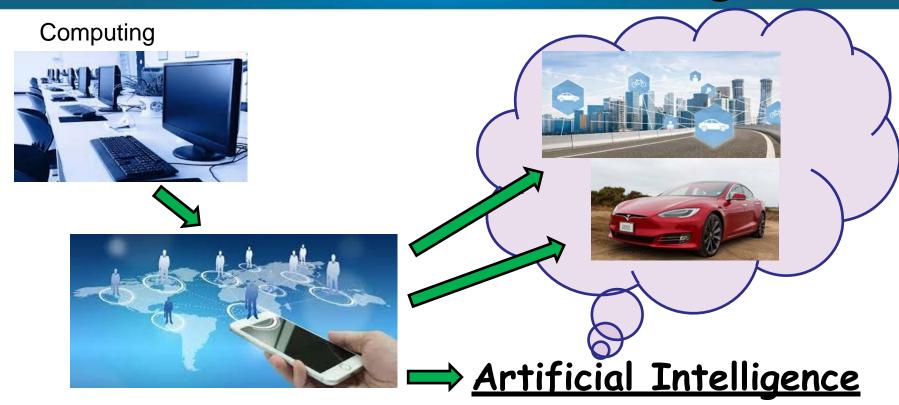
Project Trillium

Source: ARM

Al Players


	Training	Inference	Cost	Sell Systems	Sell Services	Sell Silicon
Intel	X	X	High	х		Х
Google	X		High		х	
NVidia	X		High	х		Х
ThinCl	X	X	Low			
Wave	х	х	High	х		
Graphcore	X		Low			Х
Cambricon		х	Low		х	х
GreenWaves		х	Low			х
MediaTek	X	X	Low			х
Amazon	х		High		х	X*
Cisco	х		High	х	х	
IBM	x		High	х	х	
Huawei	X		High	х	х	
Apple		X	Low	х	х	
Facebook	X		High		х	
Samsung	X	Х	Low	х		Х
Xilinx	X	х	Low			Х
Qualcomm	х	Х	Low			Х
AMD	X	Х	High			Х
Microsoft	х		High		х	

^{*} Company has stated they **may** sell their silicon to 3rd Parties


Future of AI: Ubiquitous

Industry	Al Applications	Performance	Cloud vs. End Point
Agriculture	Crop mgmt, pest control, livestock mgnt	Mid range	Cloud
Automotive	Autonomous driving, object detection/avoidance, etc	High	Both
Finance & Banking	Fraud detection, facial / voice recognition, AI mobile teller	High	Both
Govt./Military	Threat detection, assessment & analysis, security, logistics	High	Both
	Diagnosis, pharmaceutical, radiology image analysis, home		
Healthcare	care	High	Cloud
	Logistics/warehouse mgnt, inventory analysis, workflow		
Industrial / Mfg	analysis, preventative maintenance, design tools	Mid range	Cloud
	Energy demand, Smart Cities (traffic flow, crime prevention,		
Infrastructure	lighting, etc), disaster prediction (earthquake, tsunami)	Mid to High	Both
	Material research analysis, physical sciences, resource		
Research	exploration	High	Cloud
	AR, theft detection, perishable product detection, customer		
Retail	movement analysis, inventory control/logistics	Mid to High	Both
Robotics	Drones, home assistant	Mid to High	Both
Telecom	Cyber security, predictive resource analysis, anomaly detection	High	Both

Semiconductor Forecast for AI

The Paradigm Shift

Questions for Semico