Wafer Surface Control Evolving Specifications

5/11/17 Rohit Takalkar

CMC Conference 2017 Samsung S.LSI

- Introduction
- What is our FAB Strategy?
- Critical parameters for FAB performance
 - Incoming wafer PC
 - Wafer Flatness
- Future Challenges

Introduction

IC Manufacturing

http://lamp.tu-graz.ac.at/~hadley/nanoscience/week5/5.html

Sound Foundation is critical !! Wafer = Foundation

Build House

Introduction

https://www.beazer.com/maryland--dc-md/guarr v-place---single-family-homes

http://photovide.com/10-weird-buildings/

Planar

FinFet and beyond

- Newer device structures \rightarrow tighter wafer specs and control —
 - Key wafer parameters and related fab signals
 - There is still lot of room for improvement
 - Future challenges to wafer manufacturers
 - Are we are currently flying blind ?
 - Think Differently

Fab Strategy

Focus on two key wafer parameters (a) Incoming wafer PC (b) Wafer Flatness

- Both included in wafer related ITRS Roadmap
- Both behind what advanced nodes need as per ITRS*

ITRS Roadmap for critical particle size

Year of Production	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
DRAM 1/2 Pitch (nm) (contacted)	24	22	20	18	17	15	14	13	12	11	10	9.2	8.4	7.7
Critical particle size (nm) based on 50% of DRAM 1/2 Pitch (nm (contacted) [1]	12	11	10	9	8.5	7.5	7	6.5	6	5.5	5	4.6	4.2	3.9

ITRS Roadmap for wafer site flatness

Year of Production	2005	2006	2007	2008	2009	<u>2010</u>	2011	2012	<u>2013</u>
Site flatness (nm), SFQR 26									
mm × 8 mm site size	80	70	65	57	45	42	36	35	32

* ITRS standards are referred here as a guide for bare wafers but in reality specs requirements are even tighter than that.

Critical Parameters for FAB Performance

EH&S is our Foremost Principle of Management

Critical Wafer Quality: PC

Post pad film defects highlight incoming material quality

Fab: Support supplier improvements with FAB input Vendor: Drive actions to close highlighted quality gap

EH&S is our Foremost Principle of Management

Critical Wafer Quality: Flatness

Photo leveling dependence on wafer edge flatness

Fab: Identify and understand critical wafer quality parameters dependence on fab performance, feedback to vendor for quality improvement
Vendor: Identify process knobs to achieve the desired improvement

Incoming CoA not catching wafer related defects.

- 50nm PC spec obsolete for advanced nodes.
- Need to monitor and <u>spec</u> lower PC bins
 - Which pc size is appropriate ? 37nm, 26nm, 19nm ?
 - Vendors need to install SP5 capability and capacity.

Challenge: Install appropriate PC monitoring capability and capacity for advanced nodes ?

UCC = Unclustered Count

Monitoring traditional wafer quality parameters is not enough.

Monitor chemical oxide thickness ?

Use non-traditional techniques like deposition of decorating films to monitor and improve wafer quality

Pad Films UCC

Challenge: Monitor non-traditional wafer parameters, Use non traditional techniques to improve quality

EH&S is our Foremost Principle of Management

Wafer Vendor raw material/site matching Impact on Quality

- How well do you monitor incoming chemical quality ?
- How well do you monitor site UPW quality ?
- Do you have the right chemical quality monitoring capability?
- Tool to tool matching or manufacturing line to line matching ?

Challenge: Think like a HVM Fab

Summary

"Appropriate" wafer quality is critical for advanced nodes to be successful

Collaborate

Continuous Improvement

Think Differently

THANK YOU