

Innovative Etch Technologies

Solving etching and environmental challenges with new materials → Focus on silicon material etch

Nathan Stafford Global Product Manager Emerging Specialty Materials

Air Liquide's new enScribe[™] brand of etching gases

Product family of new, innovative etch molecules with an eye on <u>en</u>vironmentally friendly properties

- \rightarrow Design to function
- \rightarrow Solving Technology challenges

✓ Quality

- Environmental friendly
- ✓ Leading edge technology
- ✓ Customer driven

Air Liquide is leading the way to develop next generation etching processes with leading edge OEMs, device manufacturers, universities and technology consortiums

Development timeline - A long vision....

Solving semiconductor process challenges, especially etch with new materials requires a long vision

- \rightarrow Development of new materials
- \rightarrow Process development and integration
- \rightarrow Tool development
- \rightarrow Time to bring the product from R&D to HVM
 - \rightarrow Scale up of production equipment
 - \rightarrow Hazards testing, chemical registration, HSE requirements,

Looking towards regulatory issues is prudent early in the development

etc

Outline

- > A historical perspective the ozone layer to global warming
- Emissions in the semiconductor industry which products contribute?
- > What are governments doing about it?
- What causes a molecule to have high GWP and how can we design around it?
- Some examples of technology challenges solved with new environmentally friendly gases

The past and the present for fluoride gases

Ozone depletion

Global Warming

1970s-1980s concern about ozone layer 1987 - Montreal Protocol Phaseout of halons (BrCFC), CFCs, **HCFCs** Other rules -Clean Air Act (US) -Class I and II ODS

1990 - GWP concept 1992 - UN Framework **Convention** on Climate Change (UNFCCC) 1997 - Kyoto protocol 2012 - Doha amendment Carbon tax implementation BrCFC, CFC, HCFC, HFC, FC

enScribe

Last 10 years – highest growth for GHG Emissions

Total Annual Anthropogenic GHG Emissions by Groups of Gases 1970-2010

GHG emissions are increasing and accelerating

Electronics Manufacturing Emissions

Even though Electronics manufacturing is a small percentage of total GHG emissions, many of the chemicals used are also used in other industries (SF₆, CHF₃,)

IPCC, 2014

All GHGs are not equivalent

• SF₆, NF₃ and CHF₃ have the highest GWP

Electronics Manufacturing Emissions

Emissions by source (US fabs) (MMT CO₂e)

PFC and other F gases are used in chamber cleaning and etching

Perfluorocarbons 81%

US EPA, GHGRP WSC 2016

- Perfluorocarbons are the most concerning GHG for Electronics industry
- PFC molecules are potent GHGs with high GWP

An example of a country implementing carbon tax

By 2019, the Singapore will charge a Carbon Tax of between\$7-\$15 for every ton of CO2e per year emitted by a company.

 \rightarrow target CO₂, CH₄, N₂O, HFCs, PFCs, SF₆

Other countries not far behind?

SINGAPORE'S CLIMATE ACTION PLAN

HOW A CARBON TAX WORKS

INTRODUCE A TAX ON EMISSIONS

- Carbon tax will generally be applied upstream, for example, on power stations and other large direct emitters.
- Businesses can choose to reduce emissions or pay a carbon tax.

2 ENCOURAGE ENERGY EFFICIENCY & SUPPORT MORE GREEN ACTIONS

- Businesses are motivated to improve their energy efficiency.
- Consumers are encouraged to use less
 electricity and save energy.
- Carbon tax revenue will help to fund measures by industry to reduce emissions and provide appropriate measures to ease the transition.

LOWER CARBON, GREENER ECONOMY

- · Lower emissions lead to a greener planet.
- Businesses become more resource-efficient and sustainable.
- More opportunities in green growth sectors, such as clean technology.

https://www.nccs.gov.sg/sites/nccs/files/How_A_Carbon_Tax_Works.pdf

Need for Innovative Etch solutions

Traditional molecules have insufficient performance for new high end applications New etch materials are needed for many key applications

Environmental issues :

High gas consumption

 $\bigwedge_{\Box\Box}$

Traditional fluorocarbons have high GWP

Double Challenge :

Solve technical problems with low GWP chemistries

enScribe innovative etch materials

Understanding GHG effect to design low GWP solutions

Designing new performance molecules for etch

Balancing Process & Environmental Impact

A number of etching challenges face the industry

Air Liquide is currently developing new etch gases for a wide variety of applications and challenges

3D devices

...

TSV (3DIC)

App: 3D memory, Logic 2.5D cowos, CMOS, RF

MEMS

App: Inkjet, Accelerometers, Microphones, Lab-on-chip

...

These devices are primarily created by etching of Silicon

One issue with TSV etch involves RIE lag

- RIE lag, also called aspect ratio dependent etching (ARDE).
 - One of the technical challenges for TSV process. It is the difference in etching rate of different trench sizes. Normally the wider trench the higher etch rate.

Can this be achieved by a new gas?

TSV etch process and redesigning " C_4F_8 "

New TSV Etch Gas - Tonga[™]

2 um

20 um

	C ₄ F ₈	Tonga™
Si Etch rate (2µm feature)	Equivalent	Equivalent
RIE lag : 2µm vs 20µm	33%	~0
GWP100	8700	30
Gas consumption decrease		50%

•<u>Technology performance :</u> •<u>Environmental aspect :</u> Significant RIE lag reduction Low GWP gas Reduced gas consumption in the process

enScribe

Another Critical industry etch challenges – 3DNAND

• Etch process is complex involving mixture of multiple fluorocarbon gases to get the etch performance just right

Can include high GWP gas like C₄F₈, CHF₃, etc
 Etch chemistry plays a strong role in the performance of the process
 New chemistries are coming......

Conclusions

- New environmental regulations may be coming in the near future that can affect the GWP emitting gases used in the Semiconductor industry....
 - □ HFC's, PFC's, etc
- The etching application is facing a number of technological challenges that may be solved with new gas design
- Solving both environmental and technological challenge with new gas design may be possible
 - □ TSV etch
 - □ 3DNAND etch

Design small.

Think bia