WAFER LEVEL METAL PLATING CHEMICALS

FOR FRONT END SEMICONDUCTOR
MANUFACTURING AND ADVANCED
PACKAGING APPLICATIONS 2021

Prepared By:

Terry A Francis

With contributions from

Dan Tracy, and Lita Shon-Roy

TECHCET CALLC

11622 El Camino Real #100 San Diego, CA 92130

www.TECHCET.com

info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

Analyst Biography

TERRY FRANCIS

Director of Technology & Sr. Analyst of TECHCET— covers metal chemicals and specialty wet cleans. His work experience includes CTO, Sr. Director, Technical application expert, process manager and engineering management from companies such as Matheson, Air Products, Applied Materials, Burroughs, NCR, AMI, and National Semiconductor. He has over 40 years of experience in the semiconductor industry and has managed businesses from \$2M to over \$100M in revenues. In addition, he is experienced in material, chemical, and electrical engineering as well as the R&D and development programs in the Chemical/OEM/IDM sectors in the microelectronic industry. He holds a M.B.A. from National University, and a B.A. in chemistry from Oregon State University.

1.1 EXECUTIVE SUMMARY	11	3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	29
1.2 ADVANCED PACKAGING PER WAFER STARTS	12	3.1.2 SEMICONDUCTOR SALES GROWTH	30
1.3 DEVICE DEMAND DRIVERS - LOGIC	13	3.1.3 TAIWAN MONTHLY SALES TRENDS	31
1.4 PLATING FORECAST FOR DAMASCENE (FE) AND ADVANCED PACKAGING	14	3.1.4 SEMICONDUCTOR UNITS AND WAFER SHIPMENT GROWTH FORECAST 3.2 ELECTRONIC GOODS MARKET	32 33
1.5 MARKET SHARES	15	3.2.1 SMARTPHONES	34
1.6 SUPPLIER ACTIVITIES – VARIOUS ANNOUNCEMENTS	16	3.2.2 PC UNIT SHIPMENTS	35
1.7 ANNOUNCEMENTS	17	3.2.3 AUTOMOTIVE SALES	36
1.8 RISK FACTORS	18	3.2.3.1 AUTOMOTIVE SALES AND IMPACT ON SEMICONDUCTOR SALES	37
1.9 ANALYST ASSESSMENT	19	3.2.3.2 ELECTRIC VEHICLE (EV) MARKET TRENDS	38
		3.2.3.3 INCREASE IN SEMICONDUCTOR CONTENT FOR AUTOS	39
2 SCOPE, PURPOSE AND METHODOLOGY	20	3.2.3.4 SEMICONDUCTOR CONTENT BY AUTOMOTIVE ELECTRONIC SYSTEM	40
2.1 SCOPE	21	3.2.4 SERVERS / IT	41
2.2 PURPOSE	22	3.2.4.1 SERVERS / IT, CONTINUED – FORECASTS	42
2.3 METHODOLOGY	23	3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	43
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	24	3.3.1 EQUIPMENT SPENDING TRENDS	44
		3.3.2 RECENT INVESTMENT AND FAB/PLANT EXPANSION ACTIVITY	46
3 SEMICONDUCTOR INDUSTRY MARKET OUTLOOK	25	3.4 POLICY & TRADE TRENDS AND IMPACT	48
3.0 SEMICONDUCTOR INDUSTRY STATUS & OUTLOOK	26	3.4.1 POLICY AND TRADE ISSUES	49
3.1 SEMICONDUCTOR INDUSTRY TIED TO WORLDWIDE ECONOMY	27	3.4.2 U.S. CHIPS ACT	51

3.4.3 OTHER SEMICONDUCTOR FUNDING ACTIVITY	52	4.3.5.1 WW NI PLATING MARKET FORECAST	71
3.4.4 OVERALL CHINA MARKET TRENDS	53	4.4 DAMASCENE GROWTH TRENDS	72
3.5 SEMICONDUCTOR MATERIALS OUTLOOK	55	4.4.1 DAMASCENE GROWTH DRIVERS	73
3.5.1 TECHCET WAFER START FORECAST	56	4.4.2 DAMASCENE CU PLATTING REVENUES	74
3.5.2 SEMICONDUCTOR – LEADING EDGE NODE GROWTH	57	4.4.3 DAMASCENE ADDITIVE VOLUMES	75
3.5.3 WAFER STARTS OTHER DEVICES	58		
3.5.4 SEMICONDUCTOR MATERIALS MARKET FORECAST	59	5 TECHNICAL TRENDS	76
		5.0 TECHNOLOGY CHALLENGE	77
4 METAL CHEMICALS MARKET BY SEGMENT	60	5.0.1 METAL CLEANINGS CHALLENGE	78
4.1 DEFINITIONS	61	5.1 PACKAGING TECH TRENDS	79
4.2 METAL CHEMS MARKET OVERVIEW	62	5.1.1 KEY TRENDS IN ADVANCED PACKAGING	80
4.2.1 OVERIVEW - ADVANCED PACKAGING AND DAMASCENE		5.1.2 MARKET DYNAMICS	81
METALLIZATION	63	5.1.3 IDM—WAFER LEVEL PLATING	82
4.2.2 OVERVIEW - PLATING MARKET TRANSITIONAL TRENDS	64	5.1.4 MARKET DRIVERS OF ADVANCED PACKAGING APPLICATIONS	83
4.3 ADVANCED PACKAGING METALLIZATION – MARKET DRIVERS	65	5.1.5 TECH TRENDS – RDL	84
4.3.1 ADVANCED PACKAGING - ADDITIVES FOR CU PLATING REVENUE	66	5.1.5.1 DAMASCENE-TYPE RDL	85
4.3.2 ADVANCED PACKAGING – COPPER CHEMICALS REVENUE	67	5.1.6 INTERPOSERS (NOT WLP)S	86
4.3.3 ADVANCED PACKAGING ADDITIVE VOLUMES	68		00
434 OTHER PLATING MATERIALS FOR ADVANCED PACKAGING	69		

70

4.3.5 SN / SNAG PLATING

5.1.6.1 APPLE EXAMPLE INTERPOSERS (EPWORK CONFIDENTIAL)	87	6 COMPETITIVE LANDSCAPE		104
5.1.7 TSV FILLING 2.5-3D	88	6.1 TOTAL ADVANCED PACKAGING AND	DAMASCENE MARKET SHARES	105
5.1.8 PACKAGING ELECTROPLATING REQUIREMENTS	89	6.2 MARKET SHARE BY APPLICATION		106
5.1.8.1 PACKAGING ELECTROPLATING REQUIREMENTS - LISTING	90	6.3 MARKET SHARE BY APPLICATION		107
5.2 DAMASCENE TECH TRENDS	91	6.4 REGIONAL PLAYERS AND OTHERS		108
5.2.1 MARKET DRIVES TECHNOLOGY TRENDS	92	6.5 M&A ACTIVITY		109
5.2.1.2 TRENDS - MOL AND BEOL PERFORMANCE CHALLENGES	93			
5.2.2 CU DAMASCENE QUALIFICATION REQUIREMENTS	94	7 ANALYST ASSESSMENT		110
5.2.3 LOGIC METALLIZATION ROADMAP	95	7.1 ANALYST ASSESSMENT		111
5.2.3.1 INTERCONNECT FOR ADVANCED LOGIC	96			
5.2.4.1 GENERAL PROCESS FLOW ADVANCED DRAM	98	8 SUPPLIER PROFILES		112
5.2.5 PRECURSOR TECHNOLOGY ROADMAP: 3D NAND USING MO OR RU	99	MACDERMID ENTHONE INDUSTRIAL	JX NIPPON MINING AND META	LS
5.2.5.1 3D-NAND GENERATIONS 2020 -2025	100	SOLUTIONS	INCHEON CHEMICAL COMPAN	NY
5.2.6 EXAMPLE OF LOGIC PROCESS FLOW 20 NM TO 32 NM LOGIC PVD	101	UYEMURA ATOTECH	MITSUYA SHANGHAI SINYANG	
5.2.7 TECHNICAL REQUIREMENTS SUMMARY 1/2	102	ISHIHARA CHEMICAL/UNICON	BASF	
5.2.7.1 TECHNICAL REQUIREMENTS SUMMARY 2/2	103	DUPONT	SOULBRAIN	
		MOSES LAKE INDUSTRIES		
		APPENDICES		169
		APPENDIX A		170
		APPENDIX B		172
		APPENDIX C		181

TABLE OF FIGURES		FIGURE 14: MONTHLY AUTOMOTIVE SALES TRENDS	37
FIGURE 1: PLATING MATERIALS FOR ADVANCED PACKAGING AND		FIGURE 15: GLOBAL EV TRENDS	38
INTERCONNECT REVENUES (\$M'S)	11	FIGURE 16: SEMICONDUCTOR SPEND PER VEHICLE TYPE.	39
FIGURE 2: ADVANCED PACKAGING (AP)	12	FIGURE 17: SEMICONDUCTOR CONTENT BY AUTOMOTIVE APPLICATION.	40
FIGURE 3: ADVANCED LOGIC DEVICES GROWTH FORECAST	13	FIGURE 18: AMAZON SERVER FARM	41
FIGURE 4: COPPER PLATING CHEMICALS REVENUES (\$M'S) FOR ADVANCED PACKAGING & FE/DAMASCENE	14	FIGURE 19: SEMICONDUCTOR REVENUE GROWTH FORECASTS (AS OF MARCH 2020)	43
FIGURE 5: TOTAL PLATING MARKET SHARES FOR ADVANCED PACKAGING		FIGURE 20: CAPITAL SPENDING TRENDS BY TECHNOLOGY NODE.	44
AND SEMICONDUCTOR DEVICE MFG 2021	15	FIGURE 21 OVERVIEW OF LOGIC ROADMAP TRENDS	45
FIGURE 6: GLOBAL ECONOMY AND THE ELECTRONICS SUPPLY CHAIN (2020)	28	FIGURE 22: CHINA IC MARKET AND PRODUCTION TRENDS	53
FIGURE 7: WORLDWIDE SEMICONDUCTOR SALES	30	FIGURE 23: 300MM WAFER STARTS	57
FIGURE 8: WORLDWIDE SEMICONDUCTOR SALES (TSMC, UMC, VIS, ASE, CHIPMOS, KYEC)	31	FIGURE 24: > 32NM NODE LOGIC DEVICES GROWTH FORECAST (200MM EQUIV.)	58
FIGURE 9: SEMICONDUCTOR WAFER AREA SHIPMENTS	32	FIGURE 25: GLOBAL SEMICONDUCTOR MATERIALS HISTORY & FORECAST	59
FIGURE 10: SEMICONDUCTOR CHIP APPLICATIONS	33	FIGURE 26: PACKAGING METALLIZATION APPLICATIONS	61
FIGURE 11: MOBILE PHONE SHIPMENTS WW ESTIMATES	34	FIGURE 27: PLATING MATERIALS FOR ADVANCED PACKAGING AND FE INTERCONNECT REVENUES (\$M'S).	62
FIGURE 12: PC NOTEBOOK SHIPMENTS	35	FIGURE 28: CU PLATING CHEMICALS 5-YEAR FORECAST	63
FIGURE 13: U.S. AUTOMOTIVE SALES	36		50

FIGURE 29: ADVANCED PACKAGING APPLICATIONS IN MILLIONS OF		FIGURE 44: OSATS PACKAGING BUSINESS CANNIBALIZATION TREND
WAFERS	65	FIGURE 45: WAFER LEVEL PLATING
FIGURE 30: CU PLATING ADVANCED PACKAGING REVENUE FORECAST ESTIMATES	66	FIGURE 46: ADVANCED PACKAGING MARKET DRIVERS AND APPLICATIONS
FIGURE 31: CU PILLAR/BUMP & CU RDL SEGMENTED FORECAST	67	FIGURE 47: COMPARISON WITH DAMASCENE- TYPE RDL
FIGURE 32: ADV. PACKAGING CU/VMS VOLUME DEMAND FORECAST	68	FIGURE 48: APPLE EXAMPLE INTERPOSERS
FIGURE 33: ADV. PACKAGING CU PLATING ADDITIVES VOLUME		FIGURE 49: TSV PROCESS FLOW EXAMPLE
DEMAND FORECAST	68	FIGURE 50: METAL LEVELS PER LOGIC NODE
FIGURE 34: OTHER PLATING MATERIALS FOR ADVANCED PACKAGING	69	FIGURE 51: METAL LEVELS PER LOGIC NODE
FIGURE 35: SN AND SNAG PLATING REVENUE	70	FIGURE 52: CU DAMASCENE QUALIFICATION
FIGURE 36: NICKEL PLATING REVENUE	71	FIGURE 53: DRAM Structure
FIGURE 37: ADVANCED LOGIC DEVICES GROWTH FORECAST	72	FIGURE 54: 3DNAND Structure
FIGURE 38: METAL PLATING WAFER PASSES	73	FIGURE 55: TOTAL PLATING FOR ADV. PACKAGING AND SEMICONDUCTOR DEVICE MANUFACTURING 2021
FIGURE 39: WW DAMASCENE REVENUE FORECAST ESTIMATES	74	FIGURE 56: PLATING EQUIPMENT OEM MARKET SHARES 2020
FIGURE 40: DAMASCENE CU VMS VOLUME DEMAND FORECAST ESTIMATES	75	FIGURE 57: PLATING CHEMICAL SUPPLIER FOR DAMASCENE AND ADVANCED PACKAGING APPLICATIONS
FIGURE 41: DAMASCENE CU PLATING ADDITIVES CHEMICAL VOLUME DEMAND FORECAST	75	
FIGURE 42: CLEANING COMPLEXITY	77	
FIGURE 43: KEY TRENDS IN ADVANCED PACKAGING	80	

81

101 106

107

LIST OF TABLES

TABLE 1: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	27
TABLE 2: WORLD BANK ECONOMIC OUTLOOK*	28
TABLE 3: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES FORECAST 2021.	42
TABLE 4: DEVICE MAKER INVESTMENT ACTIVITY	46
TABLE 5: DEVICE MAKER INVESTMENT ACTIVITY, CONTINUED	47
TABLE 6: US CHIPS ACT PROVISIONS	51
TABLE 7: CU PACKAGING APPLICATIONS AND REQUIREMENTS	90
TABLE 8: LOGIC DEVICE ROADMAP FOR METALS	95
TABLE 9: METALS REQUIRED FOR DEVICE FEATURES	96
TABLE 10: DRAM USE OF MO OR RU PRESENT & FUTURE	97
TABLE 11: GENERAL PROCESS FLOW ADVANCED DRAM	98
TABLE 11: 3DNAND MATERIAL CHANGES PRESENT & FUTURE	99
TABLE 12: NUMBER OF STRINGS PER GENERATION OF 3DNAND	100
TABLE 13: EXAMPLE OF LOGIC PROCESS FLOW 20 NM TO 32 NM LOGIC PVD 101	

TABLE 14: TECHNICAL REQUIREMENTS SUMMARY

TABLE 15: TECHNICAL REQUIREMENTS SUMMARY

TABLE 16: REGIONAL PLAYERS – MARKET LEADER AND "OTHERS"

102

103

108

2 SCOPE, PURPOSE AND METHODOLOGY

 SCOPE

- This report covers the Metal Chemicals market trends and supplychain as it applied to **Advanced Packaging** (wafer level) and **Semiconductor Device Manufacturing** (damascene process).
- Included are forecasts for copper plating and additives, market shares, technical trends, and supplier profiles. Also included in the appendix is a supplier product comparison table of publicly available information on plating products used for advanced packaging.
- The report contains data and analysis from TECHCET's data base and Sr. Analyst experience, as well as that developed from primary and secondary market research. For more information on TECHCET Critical materials Reports[™] please go to https://TECHCET.com

PURPOSE

- This Critical Materials Report™ (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts.
 The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.
- Providing current information and actionable content is the intent of the information contained within this report and the quarterly updates.
- As important as the supply side of the equations is the demand requirements of the market in terms of the economic variables, leading edge technology requirements and the wafer start forecast.

METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

OVERVIEW OF OTHER TECHCET CMRTM REPORTS

TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2019 can be found at www.techcet.com and are listed in the table below:

2021	CMR Report Schedule
1	CMP Pads and Slurry
2	Equipment Components – Quartz
3	Gases + Xeon / Neon
4	Photoresist
5	Precursors - Dielectric Precursors
6	Precursors - Hi K / ALD CVD Metal Precursors
7	Silicon Wafers
8	Specialty Cleaning Chems / Wet Chems
9	Equipment Components – Ceramics/SiC
10	Metal Chemicals
11	Targets
12	Equipment Components- Silicon 2020 version with 2021 forecast

