

2022 CRITICAL MATERIALS REPORTTM: CVD/ALD DIELECTRIC PRECURSORS

Prepared By:

Jonas Sundavist, PhD

TECHCET CALLC

11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

Analyst biography

Jonas Sundqvist, Ph.D. – Sr. Technology Analyst of TECHCET— covers Electronic Gases and ALD & CVD precursors and related technologies, and the co-chair of the Annual Critical Materials Council (CMC) Conference. His over 20 years of work experience includes Group Leader of the Thin-Film Technologies Group at The Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) in Germany, Clean Room Operations Manager for Lund Nano Lab, Lund University in Sweden and Group Leader of the ALD & High-k devices group at Fraunhofer's Center Nanoelectronic Technologies (CNT) in Germany, which included 28nm node work for GLOBALFOUNDRIES Fab1.

Previously, at Infineon Memory Development Centre (MDC), he developed high-k and metal nitride ALD processes, and at Qimonda, he was a materials manager focused on the ALD/CVD precursors supply-chain. He holds a Ph.D. and an M.S. in inorganic chemistry from Uppsala University, Sweden & Institute for Micromanufacturing, Louisiana Teche, USA, a B.S. in electrical and electronics engineering from Lars Kagg, and nine patents and 40 related scientific publications.

Jonas Sundqvist is on the Scientific Committee for AVS ALD and has co-chaired ALD2016 Dublin Ireland, and the annual EFDS ALD for Industry Workshop in Germany.

Jonas Sundqvist, Ph.D.

Jonas Sundqvist, Sr. Technology Analyst of TECHCET, Electronic Gases and ALD & CVD

1 EXECUTIVE SUMMARY	11	3.1 WORLDWIDE ECONOMY	31
1.1 CVD/ALD/SOD PRECURSORS – MARKET OVERVIEW	12	3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	33
1.1.1 MARKET OVERVIEW - DIELECTRIC PRECURSORS	13	3.1.2 SEMICONDUCTOR SALES GROWTH	34
1.2 SEGMENT REVENUE TRENDS & FORECAST	14	3.1.3 TAIWAN MONTHLY SALES TRENDS	35
1.3 MARKET TRENDS IMPACTING MATERIALS SEGMENT OUTLOOK	15	3.2 ELECTRONIC GOODS MARKET	36
1.4 YEAR 2021 IN REVIEW	17	3.2.1 SMARTPHONES	37
1.5 SEGMENT 5-YEAR REVENUE FORECAST – DIELECTRIC	18	3.2.2 PC UNIT SHIPMENTS	38
1.6 TECHNOLOGY TRENDS	20	3.2.2.1 ELECTRIC VEHICLE (EV) MARKET TRENDS	39
1.7 COMPETITIVE LANDSCAPE	21	3.2.2.2 INCREASE IN SEMICONDUCTOR CONTENT FOR AUTOS	40
1.8 ANALYST ASSESSMENT	22	3.2.3 SERVERS / IT MARKET	41
2 SCOPE, PURPOSE AND METHODOLOGY	26	3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	42
2.1 SCOPE	27	3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	43
2.2 PURPOSE	28	3.3.2 WW FAB EXPANSION DRIVING GROWTH	44
2.3 METHODOLOGY	29	3.3.3 EQUIPMENT SPENDING TRENDS	45
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	29	3.3.4 TECHNOLOGY ROADMAPS	46
3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	30		

3.3.5 FAB INVESTMENT ASSESSMENT	47	4.2 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	63
3.4 POLICY & TRADE TRENDS AND IMPACT	48	4.3 TECHNICAL DRIVERS / MATERIAL CHANGES AND TRANSITIONS	65
3.4.1POLICY AND TRADE ISSUES	49	4.3.1 GENERAL TREND LAST DECADE GOING FROM PVD & LPCVD	, ,
3.5 SEMICONDUCTOR MATERIALS OUTLOOK	50	TO PECVD	66
3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODU	CTION	4.3.2 DEVICE ROADMAP	67
SCHEDULES?	51	4.3.3 LEADING EDGE DEVICE ARCHITECTURE	68
3.5.2 CONTINUED LOGISTICS ISSUES PLAGUE THE WESTE	ERN WORLD 52	4.3.4 LEADING EDGE LOGIC ROADMAP	69
3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 202	26 53	4.3.4.1 ALD DIELECTRIC PRECURSORS FOR SPACE DEFINED	70
3.5.4 TECHCET WAFER START FORECAST	54	MULTI-PATTERNING	70
3.5.5 TECHCET'S MATERIALS FORECAST	55	4.3.4.2 SUMMARY OF DEVICE SEGMENT TRENDS AND OPPORTUNITIES	71
4 PRECURSOR MARKET TRENDS	56	4.3.5 AN OVERVIEW OF SILICON CARBIDE AND GALLIUM NITRIDE	72
4.1 MARKET TRENDS	57	4.3.5.1 AN OVERVIEW OF SILICON CARBIDE AND GALLIUM NITRIDE	73
4.1.1 MARKET TRENDS – WAFER STARTS	59	4.3.5.2 AN OVERVIEW OF SILICON CARBIDE AND GALLIUM NITRIDE	74
		4.3.5.3 AN OVERVIEW OF SILICON CARBIDE AND GALLIUM NITRIDE	75
4.1.2 MARKET TRENDS – WAFER STARTS LOGIC	60	4.3.6 AN OVERVIEW OF SILICON CARBIDE AND GALLIUM NITRIDE	
4.1.3 MARKET TRENDS – WAFER STARTS DRAM	61	(MOCVD)	76
4 1 4 MARKET TRENDS – WAFER STARTS NAND	62		

4.3.6.1 AN OVERVIEW OF SILICON CARBIDE AND GALLIUM NITRIDE (MOCVD)	77	4.7.1 EHS AND LOGISTIC ISSUES – GREEN HOUSE GASES FROM LOGIC PRODUCTION	91
4.3.6.2 AN OVERVIEW OF SILICON CARBIDE AND GALLIUM NITRIDE (MOCVD)	78	4.8 CHANGES IN STANDARD PACKAGING/VALVE TYPES	92
		4.9 MARKET ASSESSMENT	93
4.4 DIELECTRIC PRECURSORS FILING ACTIVITY: IP FILING TRENDS	79	5 SEGMENT MARKET STATISTICS & FORECASTS	94
4.4.1 PRECURSORS FILING ACTIVITY: BY COMPANY CATEGORY	80	5.1 SEGMENT REVENUE TRENDS & FORECAST	95
4.4.2 DIELECTRIC PRECURSOR IP ACTIVITY: BY DEPOSITION METHOD	81	5.1.1 CVD/ALD DIELECTRIC PRECURSOR REVENUE 2020 TO	
4.4.3 ALD DIELECTRICS FOR PHOTOLITHOGRAPHY IP	82	2026 (M USD)	96
4.5 DIELECTRIC PROCESS APPLICATIONS AND R&D	83	5.1.2 ASSESSMENT DIELECTRIC PRECURSORS	97
4.5.1 IMPACT OF EUV ON MULTI-PATTERNING FOR DRAM		5.2 M&A ACTIVITIES	98
MANUFACTURING – STI MODULE	84	5.3 NEW PLANTS	99
4.5.2 AREA SELECTIVE DEPOSITION FOR USE IN ADVANCED LOGIC	85	5.4 NEW ENTRANTS - EUROPE CHINA ELECTRONIC MATERIALS	
4.5.3 DRY RESIST FOR EUV	86	(CHINA)	100
4.6 REGIONAL TRENDS – DIELECTRIC PRECURSORS	87	5.4.1 NEW ENTRANTS – NATA CHEMICALS	101
4.6.1 REGIONAL TRENDS AND DRIVERS	88	5.4.2 CHINA ALD DIELECTRIC RECENT DEVELOPMENT	102
4.6.2 REGIONAL TRENDS AND DRIVERS, CONTINUED	89	5.5 PRICING TRENDS	103
4.7 EHS AND LOGISTIC ISSUES	90	5.6 COMPETITIVE LANDSCAPE — PRECURSOR SUPPLIER MARKET SHARE	104

5.6.1 COMPETITIVE LANDSCAPE — PRECURSOR MARKET BY REGION	105	7 SUPPLIER PROFILES	120
5.7 MARKET LANDSCAPE — PROCESS TOOLS	106	ADEKA Corporation	
5.7.1 MARKET LANDSCAPE — PROCESS TOOL FORECAST GROWTH	107	Air Liquide AZmax Co., Ltd	
5.7.2 LONG TERM AND 5-YEAR WAFER EQUIPMENT FORECAST	108	DNF Co., Ltd	
5.7.3 PROCESS TOOLS SEGMENTED BY DEPOSITION METHOD	109	Entegris	
5.7.4 PROCESS TOOLS MADE FOR DEPOSITION, ASSESSMENT	110	Epivalence Gelest – Mitsubishi Chemicals	
6 SUB TIER MATERIAL SUPPLY CHAIN	111	Hansol Chemical H.C. Starck	
6.1 SUB-TIER SUPPLY-CHAIN: INTRODUCTION	112	Kojundo Chemical Laboratory	
6.2 SUB-TIER SUPPLY-CHAIN M&A ACTIVITY	113	and many more	
6.3 SUB-TIER SUPPLY-CHAIN EHS AND LOGISTICS ISSUES	114		
6.4 SUB-TIER SUPPLY-CHAIN "NEW" ENTRANTS	116		
6.5 SUB-TIER SUPPLY-CHAIN PLANTS UPDATES-NEW	117		
6.6 SUB-TIER SUPPLY-CHAIN PRICING TRENDS	118		
6.7 SUB-TIER SUPPLY-CHAIN TECHCET ANALYST ASSESSMENT	119		

FIGURES & TABLES

FIGURES		FIGURE 16: 3-MONTH AVERAGE SEMICONDUCTOR EQUIPMENT BILLINGS	45
FIGURE 1: DIELECTRIC PRECURSOR MARKET FORECAST	14	FIGURE 17: OVERVIEW OF DEVICE TECHNOLOGY ROADMAP	46
FIGURE 2: TOTAL PRECURSOR MARKET (M USD)	17	FIGURE 18: EUROPE CHIP EXPANSION UPSIDE	51
FIGURE 3: DIELECTRIC PRECURSOR MARKET 2020 TO 2026	18	FIGURE 19: TECHCET WAFER START FORECAST BY NODE	53
FIGURE 4: GLOBAL ADVANCED PRECURSOR MARKET 2021 (USD)	21	FIGURE 20: TECHCET WAFER START FORECAST BY LOGIC NODE	54
FIGURE 5: GLOBAL ECONOMY AND THE ELECTRONICS SUPPLY CHAIN		FIGURE 21: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK	55
(2021)	33	FIGURE 22: FORECASTS – WAFER STARTS 2018 TO 2026	59
FIGURE 6: WORLDWIDE SEMICONDUCTOR SALES	34	FIGURE 23: FORECASTS – WAFER STARTS LOGIC 300MM	60
FIGURE 7: TECHCET'S TAIWAN SEMICONDUCTOR INDUSTRY INDEX*	35	FIGURE 24: FORECASTS – WAFER STARTS DRAM 300MM	61
FIGURE 8: 2021 CHIP REVENUE	36	FIGURE 25: ANNUAL WAFER STARTS	
FIGURE 9: MOBILE PHONE SHIPMENTS WW ESTIMATES	37	(MILLIONS OF 200MM EQUIVALENT / YEAR)	62
FIGURE 10: WORLDWIDE PC AND TABLET FORECAST, 2021, Q3	38	FIGURE 26: ALD DIELECTRICS FOR PHOTOLITHOGRAPHY IP	65
FIGURE 11: GLOBAL EV TRENDS	39	FIGURE 27: DEVICE ARCHITECTURES	66
FIGURE 12: SEMICONDUCTOR SPEND PER VEHICLE TYPE	40	FIGURE 28: DEVICE ROADMAPS	67
FIGURE 13: TSMC CONSTRUCTION SITE IN ARIZONA	42	FIGURE 29: IMEC 2021 LOGIC ROADMAP	68
FIGURE 14: CHIP EXPANSIONS 2021-2026 > US\$460 B	43	FIGURE 30: SCALING AND LITHOGRAPHY TRENDS	69
FIGURE 15: SEMICONDUCTOR CHIP MANUFACTURING REGIONS OF		FIGURE 31: IMEC 2021 LOGIC ROADMAP	69
THE WORLD	44	FIGURE 32: MULTI-PATTERNING PROCESS STEPS AND SEM	70

FIGURES & TABLES

FIGURE 33: LOW TEMP DIELECTRIC PRECURSOR DEPOSITION TEMPERATURE AND ACTIVATION ENERGY FOR ADV. MPT/QPT	70	FIGURE 47: SEGMENTATION OF THE AMPOULE FLEER 2020 BASED ON NUMBER OF UNITS IN THE FIELD	92
FIGURE 34: POWER DEVICE APPLICATION OVERVIEW	73	FIGURE 48: DIELECTRIC PRECURSOR MARKET FORECAST	95
FIGURE 35: POWER MOSFET STRUCTURE	74	FIGURE 49: DIELECTRIC PRECURSOR MARKET 2020 TO 2026	96
FIGURE 36: POWER DEVICE TRADEOFFS	74	FIGURE 50: ECEM PRODUCT OFFERINGS	100
FIGURE 37: MARKET SHARE EPI MOCVD EQUIP. TOTAL AVAILABLE MARKET- US\$700 M	77	FIGURE 51: SAQP FILM STRUCTURE AND PROCESS FLOW	102
FIGURE 38: IP FILING FOR CVD AND ALD DIELECTRIC PRECURSORS	79	FIGURE 52: TOTAL DIELECTRIC PRECURSOR MARKET SHARE 2021 (US\$652 M)	104
		FIGURE 53: GLOBAL ADVANCED PRECURSOR MARKET 2021 (USD)	105
FIGURE 39: DIELECTRIC PRECURSOR IP DISTRIBUTION (2019-2021)	80 81	FIGURE 54: SEMICONDUCTOR EQUIPMENT SEGMENTATION	106
FIGURE 40: DIELECTRIC IP FILING TRENDS BY DEP METHOD (1993 TO 2019)	01	FIGURE 55: SEMICONDUCTOR EQUIPMENT FORECAST	107
FIGURE 41: PATENT ACTIVITY BUBBLE CHART, OF ALD DIELECTRICS AND PHOTOLITHOGRAPHY	82	FIGURE 56: SEMICONDUCTOR MARKET SIZE AND OUTLOOK	108
FIGURE 42: IMPACT OF EUV ON USAGE OF MULTI-PATTERNING	84	FIGURE 57: SEMICONDUCTOR EQUIPMENT FORECAST	108
FIGURE 43: TOPOGRAPHY FOR SELECTIVE SIN	85	FIGURE 58: DEPOSITION SEGMENTS (USD BILLION)	109
FIGURE 44: EXAMPLE OF LINE PATTERNS CREATED VIA "DRY RESIST" (CVD	0.4	FIGURE 59: TYPICAL NON-HALIDE LIGANDS USED FOR ALD PRECURSORS	112
DEPOSITION)	86	FIGURE 60: SYSTEM DEFINITION OF THE GLOBAL ANTHROPOGENIC	
FIGURE 45: HARDMASK, LOW K & DIELCTRIC PRECURSORS REGIONAL SHARES 2021	87	COBALT CYCLE AND MODELING FRAMEWORK FOR COBALT DEMAND AND SECONDARY SUPPLY POTENTIALS.	115
FIGURE 14: ENVIRONMENTAL FOOTPRINT OF MOORES LAW	91		

FIGURES & TABLES

TABLES

CONSUMPTION BY REVENUE)	13
TABLE 2: PRECURSOR MARKET SIZE	14
TABLE 3: INDUSTRY AND ECONOMIC SUMMARY	17
TABLE 4: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	31
TABLE 5: IMF ECONOMIC OUTLOOK*	32
TABLE 6: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES FORECAST 2021	41
TABLE 7: GENERAL PRECURSOR TRENDS AND OPPORTUNITIES BY DEVICE TYPE	71
TABLE 8: MOCVD APPLICATIONS - EPI DEPOSITION ON SUBSTRATE	76
TABLE 9: MOCVD EQUIPMENT VENDORS	77
TABLE 10: REGIONAL MARKETS (US\$ MILLIONS)	87
TABLE 11: REGIONAL PRECURSOR MARKETS	88
TABLE 12: REGIONAL WAFER MARKETS	89
TABLE 13: PRECURSOR MARKET SIZE	95
TABLE 14: M&A ACTIVITIES	98
TABLE 14: M&A ACTIVITIES	98

TECHCET-CMR-ALD/CVD-Dielectrics-CMC-070722LS

Copyright 2022 TECHCET CA, LLC all rights reserved

2 SCOPE, PURPOSE AND METHODOLOGY

2.1 SCOPE

- This report provides market and technical trend information on inorganic gases and liquid CVD precursors and SOD materials used for forming dielectric insulators. For the last 20 years, there have been many research papers and patents published regarding ALD and CVD precursors specifically for the semiconductor industry. This report includes detail on the development path and roadmaps for new precursors and any current EHS and regulatory hurdles for these materials to enter into high volume manufacturing (HVM).
- The focus is on the leading-edge front end of the line insulating interconnect materials, including sacrificial layers, low-k dielectrics, hard masks, mandrel, and etch stop layers. These process areas are of interest because of the high growth potential associated with leading-edge logic <45 nm, 28 nm to 10/7 nm nodes, and the future 5 & 3 nm nodes, as well as advanced DRAM and 3DNAND volatile and non-volatile memories. New memory technologies like STT-MRAM, Resistive RAM, Ferroelectric RAM, and FETs, and Cross Point Memory will emerge in the coming 5 years. Today the recent NAND transition to 3DNAND and continued vertical scaling will drive growth for metal and dielectric precursors.

2.2 Purpose

• This Critical Materials Report™ (CMR) provides focused information for business managers (supply-chain and business development), process integration and R&D directors, as well as financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.

2.3 METHODOLOGY

• TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

2.4 Overview of Other TECHCET CMRTM Reports

• TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2022 can be found at www.techcet.com and are listed in the table.

	Critical Materials Reports™
	·
1	CMP Pads and Slurry
2	Electronic Gases
3	Photoresist
4	Precursors - Dielectric Precursors
5	Precursors - Hi K / ALD CVD Metal Precursors
6	Silicon Wafers
7	Specialty Cleaning Chems / Wet Chems
8	Metal Chemicals
9	Targets
10	Equipment Components – Quartz
11	Equipment Components – Ceramics/SiC
12	Equipment Components- Si parts
Speci	al Reports
13	Impact of US Chip Expansions
14	Impact of European Chip Expansions

