

SPUTTERING TARGETS

SUPPLY-CHAIN & MARKET ANALYSIS A CRITICAL MATERIALS REPORTTM

Prepared By:

Daniel Tracy

TECHCET CALLC

11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

ANALYST BIOGRAPHY

- Sr. Director of Market Research, TECHCET
- Expertise in materials supply-chains including wafers, sputtering targets and packaging materials,
- Has over 25 years of experience in the electronics industry covering semiconductor markets including semiconductor packaging, thin films, semiconductor process equipment, and front-end semiconductor materials.
- Previous experience includes Sr. Director of Industry Research & Statistics group at SEMI, Sr. Research Analysts at Rose Associates, and Packaging Engineer at National Semiconductor.
- Holds a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute.

1	EXECUTIVE SUMMARY	11		3.1.3	TAIWAN MONTHLY SALES TRENDS	33
1.1	TARGET BUSINESS – MARKET OVERVIEW	12		3.1.4	SEMICONDUCTOR INDUSTRY OUTLOOK	34
1.2	TARGET MARKET TRENDS	13		3.1.5	SEMICONDUCTOR UNITS AND WAFER SHIPMENT GROWTH	
1.3	TARGET MARKET ASSESSMENT	14			FORECAST	35
1.4	TECHNOLOGY TRENDS	15	3.2	ELECTRO	ONIC GOODS MARKET	36
1.5	TARGET REVENUES 5-YEAR FORECAST	17		3.2.1	SMARTPHONES	37
1.6	PRECIOUS METAL TARGET MARKET REVENUE FORECAST	18		3.2.2	PC UNIT SHIPMENTS	38
1.7	COMPETITIVE LANDSCAPE	19		3.2.3	AUTOMOTIVE SALES	39
1.8	EHS ISSUES/CONCERNS	20		3.2.3.1	AUTOMOTIVE SALES AND IMPACT ON	
2	SCOPE, PURPOSE AND METHODOLOGY	21			SEMICONDUCTOR SALES	40
2.1	SCOPE	22		3.2.3.2	ELECTRIC VEHICLE (EV) MARKET TRENDS	41
2.2	PURPOSE	24		3.2.3.3	INCREASE IN SEMICONDUCTOR CONTENT FOR	
2.3	METHODOLOGY	25			AUTOS	
2.4	OVERVIEW OF OTHER TECHCET CMR TM REPORTS	26		3.2.3.4	SEMICONDUCTOR CONTENT BY AUTOMOTIVE	40
3	MARKET OUTLOOK	27			ELECTRONIC SYSTEM	43
3.1	WORLDWIDE ECONOMY	29		3.2.4	SERVERS/IT	44
	3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL			3.2.4.1	SERVERS/IT, CONTINUED – FORECASTS	45
	ECONOMY	31				
	3.1.2 SEMICONDUCTOR SALES GROWTH	32				

3.3	SEMICO	NDUCTOR FABRICATION GROWTH & EXPANSION	46	4.3	СОММЕ	nt on regional trends/drivers	71
	3.3.1	SEMICONDUCTOR UNITS AND WAFER SHIPMENT GROWTH	47		4.3.1	REGIONAL TRENDS AND ISSUES	72
		FORECAST			4.3.2	SPUTTERING TARGET PRODUCTION LOCATIONS –	
	3.3.2	EQUIPMENT SPENDING TRENDS	48			REGIONAL TRENDS	73
	3.3.3	RECENT INVESTMENT AND FAB/PLANT EXPANSION ACTIVITY	51		4.3.3	REGIONAL MARKET SIZE AND TRENDS	74
	3.3.4	OVERALL CHINA MARKET TRENDS	53	4.4	METAL TA	ARGET COST STRUCTURE	75
3.4	POLICY	& TRADE TRENDS AND IMPACT	55		4.4.1	ESTIMATED TARGET COST STRUCTURE OVERVIEW	76
	3.4.1	POLICY AND TRADE ISSUES	56	4.5	EHS, REG	GULATIONS, AND LOGISTIC ISSUES	77
	3.4.2	U.S. CHIPS ACT	58		4.5.1	LOGISTIC ISSUES	78
	3.4.3	OTHER SEMICONDUCTOR FUNDING ACTIVITY	59		4.5.2	EHS ISSUES	79
3.5	SEMICO	NDUCTOR MATERIALS OUTLOOK	60		4.5.3	REGULATIONS: U.S.	80
	3.5.1	SEMICONDUCTOR – LEADING EDGE NODE GROWTH	61		4.5.4	REGULATIONS: EU	81
	3.5.2	TECHCET WAFER START FORECAST	62	5 9		MARKET LANDSCAPE	82
	3.5.3	SEMICONDUCTOR MATERIALS FORECAST	63	5.1		STATISTICS & FORECASTS	83
4	SPUTTERI	NG TARGET MARKET TRENDS	64		5.1.1	TARGET MARKET FORECAST	84
4.1	2021 AS	SESSMENT	65		5.1.2	ESTIMATE FOR PRECIOUS METAL TARGET MARKET	85
	4.1.1	CY2021 MARKET ASSESSMENT	66		5.1.3	FORECAST METHODOLOGY	86
	4.1.2	2021 TARGET MARKET REVENUE ESTIMATE	67		5.1.4	ESTIMATED 2020 MARKET SHARE	87
	4.1.3	CY2020 IN REVIEW	68		5.1.5	TARGET SUPPLIER UPDATES	88
	4.1.3.1	2020 TARGET MATERIAL MARKET SHARE	69		5.1.6	EMERGING MEMORY TARGETS MATERIAL SUPPLIERS	91
4.2	SUB-TIER	SUPPLY-CHAIN STATUS & TRENDS FOR 2021	70		5.1.7	RUTHENIUM TARGET SUPPLIERS	92
					J.I./	NUTITEINIUM TARGET SUFFLIERS	7 🗸

5.2	M&A AC	TIVITY AND PARTNERSHIPS	93		6.1.11	EMERGING MEMORY MATERIALS	115
5.3	PLANT C	CLOSURES	95		6.1.12	MRAM TARGET NEEDS AND ISSUES	116
5.4	NEW EN	TRANTS	96		6.1.13	GST FOR PCM	117
5.5	SUPPLIER	RS OR PARTS/PRODUCT LINE THAT ARE AT RISK OF	97		6.1.14	PZT FILMS	118
	DISCON	TINUATION			6.1.15	PIEZOELECTRIC MATERIALS – AL ALLOYS (ALSC AND ALN)	119
	5.5.1	RISKS AND DISCONTINUATIONS	98	7	SUB-TIEI	R SUPPLY-CHAIN METALS	120
5.6	TECHCE.	t analyst assessment	99	7.1	SUB TIER	R SUPPLY-CHAIN: SOURCES & MARKETS	121
6	TECHNIC	CAL DRIVERS/MATERIAL CHANGES AND TRANSITIONS	102		7.1.1	COPPER METAL	122
6.1	TECHNIC	CAL DRIVERS/MATERIAL CHANGES AND TRANSITIONS	103		7.1.2	TANTALUM METAL	125
	6.1.1	DEVICE TECHNOLOGY FOUNDRY/LOGIC ROADMAP	104		7.1.3	ALUMINUM METAL	129
	6.1.2	ALTERNATIVE METAL EXAMPLES FOR LOGIC	105		7.1.4	TITANIUM METAL	131
	6.1.3	PVD PROCESSES FOR 10NM & BELOW LOGIC	107		7.1.5	TUNGSTEN METAL	136
	6.1.4	FOUNDRY/LOGIC INTERCONNECTS	108		7.1.6	COBALT METAL	140
	6.1.5	NAND ROADMAP	109		7.1.7	PRECIOUS METALS	143
	6.1.6	TECHNOLOGY ROADMAP FOR 3D NAND	110		7.1.8	HIGH-PURITY MANGANESE	148
	6.1.7	GENERAL PVD PROCESSES FOR 3D NAND	111		7.1.9	RARE EARTHS	149
	6.1.8	DRAM ROADMAP	112	7.2	SUB-TIER	R SUPPLY-CHAIN: DISRUPTIONS	154
	6.1.9	PVD PROCESSES IN ADVANCED DRAM	113		7.2.1	SUB-TIER SUPPLY-CHAIN DISRUPTIONS	155
	6.1.10	MEMORY DEVELOPMENT REQUIREMENTS	114	7.3	SUB-TIER	R SUPPLY-CHAIN: M&A ACTIVITY	156

7.4	SUB-TIER	SUPPLY CHAIN: EHS AND LOGISTICS ISSUES	157	8	SUPPLIER PROFILES		175
7.5 7.6		SUB-TIER SUPPLY-CHAIN EHS AND LOGISICS ISSUES SUPPLY-CHAIN "NEW" ENTRANTS SUPPLY-CHAIN PRICING TRENDS CU METAL PRICING AL METAL PRICING TA METAL PRICING TI METAL PRICING W METAL PRICING CO METAL PRICING	158 159 160 161 162 163 164 165		Furuya Metal Co. Ltd. GO Element Corp. Grikin Honeywell Electronic Materials JX NIPPON KMFI Materion Advanced Materials Pioneer Materials Inc. Linde (former Praxair) Solar Applied Materials Technolog	Sumitomo Chemical Co. Tanaka Precious Metals TOP Metal Material Tosoh SMD Umicore Electro Optic Materials Vacuum Engineering & Materials Vital Materials Co. Limited PLASMATERIALS Kojundo Chemical Laboratory C	S
	7.6.7	PRECIOUS METAL PRICING	167	9	APPENDICES		225
7.7	SUB-TIER	SUPPLY-CHAIN TECHCET ANALYST ASSESSMENT	173	APF	PENDIX A – INTERCONNECT TRENDS: I	RUTHENIUM	226
	7.7.1	ASSESSMENT		APF	PENDIX B — PIEZOELECTRIC MATERIALS	S: ALN AND ALSC PIEZOELECTRICS	227
				APF	PENDIX C – TA METAL: CLOSED MARK	KET ECONOMICS	228
				APF	Pendix d – w metal: fanya bourse	.	229

FIGURES & TABLES

TABLE OF FIGURES

FIGURE 1: SPUTTERING TARGET MARKET FORECAST	17	FIGURE 16: AMAZON SERVER FARM	4
FIGURE 2: PRECIOUS METAL TARGET FORECAST	18	FIGURE 17: SEMICONDUCTOR WAFER AREA SHIPMENTS	4
FIGURE 3: GLOBAL ECONOMY AND THE ELECTRONICS SUPPLY CHAIN		FIGURE 18: 3-MONTH AVERAGE SEMICONDUCTOR EQUIPMENT BILLINGS	48
(2020)	31	FIGURE 19: CAPITAL SPENDING TRENDS BY TECHNOLOGY NODE	49
FIGURE 4: WORLDWIDE SEMICONDUCTOR SALES	32	FIGURE 20: OVERVIEW OF LOGIC ROADMAP TRENDS	50
FIGURE 5: WORLDWIDE SEMICONDUCTOR SALES	33	FIGURE 21: CHINA IC MARKET AND PRODUCTION TRENDS	53
FIGURE 6: SEMICONDUCTOR REVENUES 2021	34	FIGURE 22: 300MM WAFER STARTS	6
FIGURE 7: SEMICONDUCTOR WAFER AREA SHIPMENTS	35	FIGURE 23: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK	63
FIGURE 8: SEMICONDUCTOR CHIP APPLICATIONS	36	FIGURE 24: SPUTTERING TARGET 2021 MARKET FORECAST	67
FIGURE 9: MOBILE PHONE SHIPMENTS WW ESTIMATES	37	FIGURE 25: 2020 SPUTTERING TARGET MARKET BY REVENUES	69
FIGURE 10: PC NOTEBOOK SHIPMENTS	38	FIGURE 26: REGIONAL SHARE (AS A % OF TOTAL TARGET DEMAND BY USD)	7
FIGURE 11: U.S. AUTOMOTIVE SALES	39	FIGURE 27: SPUTTERING TARGET MARKET FORECAST	84
FIGURE 12: MONTHLY AUTOMOTIVE SALES TRENDS	40	FIGURE 28: PRECIOUS METAL TARGET FORECAST	8
FIGURE 13: GLOBAL EV TRENDS	41	FIGURE 29: EST. 2020 SUPPLIER MARKET SHARE	87
FIGURE 14: SEMICONDUCTOR SPEND PER VEHICLE TYPE	42		
FIGURE 15: SEMICONDUCTOR CONTENT BY AUTOMOTIVE APPLICATION	43		

FIGURES & TABLES

TABLE OF FIGURES

FIGURE 30: DAMASCENE PROCESS	105	FIGURE 45: EST. 2020 CO MINE PRODUCTION 140 MILLION MI	140
FIGURE 31: ALTERNATIVE METAL EXAMPLES	106	FIGURE 46: EST. 2020 GLOBAL CO DEMAND >120,000 MT	142
FIGURE 32: ROADMAP FOR 3D NAND	110	FIGURE 47: 2020 AU MINING PRODUCTION ~3,500 MT	143
FIGURE 33: PVD PROCESSES FOR 3D NAND	111	FIGURE 48: 2020 AG MINING PRODUCTION ~24,500 MT	144
FIGURE 34: DRAM SEM CROSS SECTION	113	FIGURE 49: LME CU PRICE CHART	161
FIGURE 35: 2020 EST. GLOBAL CU MINE PRODUCTION 20 MILLION MT	122	FIGURE 50: LME AL PRICE CHART	162
FIGURE 36: 2020 GLOBAL REFINED CU CONSUMPTION 24.5 MILLION MT	124	FIGURE 51: APT (W) PRICE CHART	165
FIGURE 37: 2020 EST. TANTALUM MINE PRODUCTION 1700 MT	125	FIGURE 52: LME CO METAL PRICE CHART	166
FIGURE 38: 2019 TANTALUM PRODUCT DEMAND (~1,900 T)	127	FIGURE 53: GOLD METAL PRICE CHARTS	167
FIGURE 39: EST. WORLD ALUMINUM SMELTING PRODUCTION 2020	100	FIGURE 54: SILVER METAL PRICE CHARTS	167
65.2 MILLION MT	129	FIGURE 55: PLATINUM METAL PRICE CHARTS	168
FIGURE 40: EST. 2020 GLOBAL AL DEMAND 89.8 MT	130		168
FIGURE 41: EST. GLOBAL TI CONCENTRATE MINING PRODUCTION-		FIGURE 56: PALLADIUM METAL PRICE CHARTS	100
2020 7,600 KT	131	FIGURE 57: IRIDIUM METAL PRICE CHARTS	169
FIGURE 42: EST. GLOBAL TI SPONGE CAPACITY-2019 >210,000 MT	132	FIGURE 58: RUTHENIUM METAL PRICE CHARTS	169
FIGURE 43: EST. 2020 W MINE PRODUCTION 84,000 T	136	FIGURE 59: SC CONTENT IN AL VS. PIEZOELECTRIC RESPONSE	178
FIGURE 44: 2020 GLOBAL W DEMAND ~92,000	137		

FIGURES & TABLES

LIST OF TABLES

TABLE 1: CMR REPORT SCHEDULE	26	TABLE 14: METALS ROADMAP FOR LOGIC DEVICES	106
TABLE 2: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	29	TABLE 15: PVD PROCESSORS FOR 10NM & BELOW LOGIC	107
TABLE 3: IMF WORLD ECONOMIC OUTLOOK*	30	TABLE 16: NAND ROADMAP	109
TABLE 4: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES		TABLE 17: PVD PROCESSES FOR 3D NAND	111
FORECAST 2021	45	TABLE 18: DRAM ROADMAP	112
TABLE 5: DEVICE MAKER INVESTMENT ACTIVITY	51	TABLE 19: DRAM PVD PROCESS STEPS	113
TABLE 6: DEVICE MAKER INVESTMENT ACTIVITY	52	TABLE 20: STATUSES OF GLOBAL MINING PROJECTS	141
TABLE 7: US CHIPS ACT PROVISIONS	58	TABLE 21: PRECIOUS METALS APPLICATIONS	145
TABLE 8: SPUTTERING TARGET SUPPLIER MANUFACTURING LOCATIONS	73	TABLE 22: RARE EARTH USAGE BY APPLICATION	149
TABLE 9: REGIONAL MARKETS	74	TABLE 23: SC MARKET APPLICATIONS	153
TABLE 10: TARGET COST STRUCTURE	76	TABLE 24: METAL FUTURE AVAILABILITY	155
TABLE 11: PHASE CHANGE MATERIAL AND MRAM TARGET SUPPLIERS	91	TABLE 2 II. METALE FORME AND MEANING	100
TABLE 12: RUTHENIUM TARGET SUPPLIERS	92		
TABLE 13: LOGIC/FOUNDRY ROADMAP	104		

2 SCOPE, PURPOSE AND METHODOLOGY

SCOPE

- This report covers the sputtering targets and supply-chain for key metals used in semiconductor device fabrication. The report contains data and analysis from TECHCET's data base and Sr. Analyst experience, as well as that developed from primary and secondary market research. For more information on TECHCET Critical materials Reports™ please go to https://TECHCET.com
- Sputtering targets are a critical in semiconductor manufacturing as sputtering allows the deposition of as most semiconductor devices are fabricated on silicon, thus silicon wafers are also the largest material spend of the semiconductor manufacturers. One of the challenges that the silicon wafer manufacturers encounter is profitability due to the timing of investments and industry downturns. Wafer pricing declined sharply from 2007 through 2016. The resulting rise and fall of profitability has led to a considerable consolidation in the market over the years, such that six manufacturers account for most of the wafer revenue and shipments. Despite this trend, new suppliers are emerging in the China market to support the "Made in China" program backed by the government. When these suppliers gain in capability and capacity, their influence could dramatically impact the silicon supply chain in the next 3+ years.

SCOPE, CONTINUED

- Target demand forecast is reported in terms of revenue growth, segmented and modeled by 200mm and 300mm target sizes.
- An absolute count of the number of sputtering targets is not included in this analysis for the following reasons:
 - The variety of sputtering target configurations employed by the semiconductor industry (i.e. "standard" planar targets, extended use targets, monolithic targets, and HCM's)
 - The target utilization (i.e. fraction of materials sputtered from a target) varies based on target configuration and process conditions)
 - o The introduction of alloys to improve RC Delay problems , reduce defects and improve electro-migration.

PURPOSE

 This Critical Materials Report™ (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.

METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

OVERVIEW OF
OTHER TECHCET
CMRTM REPORTS

 TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2020 can be found at www.techcet.com and are listed in the table below:

Table 1: CMR Report Schedule

2021	CMR Report Schedule
1	CMP Pads and Slurry
2	Equipment Components – Quartz
3	Gases + Xeon / Neon
4	Photoresist
5	Precursors - Dielectric Precursors
6	Precursors - Hi K / ALD CVD Metal Precursors
7	Silicon Wafers
8	Specialty Cleaning Chems / Wet Chems
9	Equipment Components – Ceramics/SiC
10	Metal Chemicals
11	Targets
12	Equipment Components- Silicon 2020 version with
12	2021 forecast

