2022 CRITICAL MATERIALS REPORT WAFER LEVEL METAL PLATING CHEMICALS

TM

For Front End Semiconductor Manufacturing and Advanced Packaging Applications 2022

Prepared By: Karey Holland, PhD **With contributions from** Terry Francis, Dan Tracy, and Lita Shon-Roy

TECHCET CA LLC 11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

Electronics Materials Information

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

ANALYST BIOGRAPHY

Karey Holland

Karey Holland, Ph.D. is TECHCET's Chief Strategist & Sr. Technical Analyst and is a co-founder of TECHCET. Dr. Holland has led advances in interconnect technologies, CMP, photolithography, vacuum technology, reactive ion etch, metrology, and metals and dielectric depositions for over 35 years. She specialized in advanced semiconductor transistor fabrication evolutions for the next 10 years. She was previously CTO of Revasum, a SiC polish process and equipment supplier. Before joining Revasum, she was Global Market Sector Manager Semiconductor Process Technology at Edwards Vacuum, VP Process Technology at Mega Fluid Systems, Senior Manager Technology Roadmap at FEI, CTO of NexPlanar, member of the Board of Directors at Nova Measuring Instruments, VP Technology at Thomas West, and CTO and VP of Process Technology IPEC-Westech / SpeedFam-IPEC. Her career began in process engineering at IBM where she managed the first 248nm DUV lithography technology development team, and also developed interconnect integration for 4 and 16 Mb DRAMs which were the first chips in the world to use CMP for all interconnect dielectrics. Dr. Holland holds a Ph.D. in electro-analytical chemistry from Pennsylvania State University, a M.S. in analytical chemistry from Purdue University, and a B.A. in chemistry from Albion College.

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY	8	3.2.2.2 INCREASE IN SEMICONDUCTOR CONTENT FOR AUTOS	33
1.1 EXECUTIVE SUMMARY	9	3.2.3 SERVERS / IT MARKET	34
1.2 ADVANCED PACKAGING PER WAFER STARTS	10	3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	35
1.3 DEVICE DEMAND DRIVERS - LOGIC	11	3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	36
1.4 CU PLATING FORECAST FOR DAMASCENE (FE) AND		3.3.2 WW FAB EXPANSION DRIVING GROWTH	37
ADVANCED PACKAGING	12	3.3.3 EQUIPMENT SPENDING TRENDS	38
1.5 MARKET SHARES	13	3.3.4 TECHNOLOGY ROADMAPS	39
1.6 SUPPLIER ACTIVITIES – VARIOUS ANNOUNCEMENTS	14	3.3.5 FAB INVESTMENT ASSESSMENT	40
1.7 RISK FACTORS	15	3.4 POLICY & TRADE TRENDS AND IMPACT	41
1.8 ANALYST ASSESSMENT	16	3.4.1 POLICY AND TRADE ISSUES	42
2 SCOPE, PURPOSE AND METHODOLOGY	17	3.5 SEMICONDUCTOR MATERIALS OUTLOOK	43
2.1 SCOPE	18	3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODUCTION	
2.2 PURPOSE	19	SCHEDULES?	44
2.3 METHODOLOGY	20	3.5.2 CONTINUED LOGISTICS ISSUES PLAGUE THE WESTERN WORLD	45
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	21	3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 2026	46
3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	22	3.5.3.1 TECHCET WAFER START MODELING METHODOLOGY	47
3.1 WORLDWIDE ECONOMY	23	3.5.4 TECHCET'S MATERIAL FORECAST	48
3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	25	4 METAL CHEMICALS MARKET BY SEGMENT	49
3.1.2 SEMICONDUCTOR SALES GROWTH	26	4.1 DEFINITIONS	50
3.1.3 TAIWAN MONTHLY SALES TRENDS	27	4.1.1 DEFINITIONS, CONTINUED	51
3.1.4 UNCERTAINTY ABOUNDS ESPECIALLY FOR 2023 –		4.2 METAL PLATING CHEMICALS MARKET OVERVIEW	52
SLOWER TO NEGATIVE SEMI REVENUE GROWTH EXPECTED	28	4.2.1 OVERVIEW - ADVANCED PACKAGING AND	
3.2 ELECTRONIC GOODS MARKET	29	DAMASCENE METALLIZATION	53
3.2.1 Smartphones	30	4.2.2 OVERVIEW - PLATING MARKET TRANSITIONAL TRENDS	54
3.2.2 PC UNIT SHIPMENTS	31	4.3 ADVANCED PACKAGING METALLIZATION -	
3.2.2.1 ELECTRIC VEHICLE (EV) MARKET TRENDS	32	MARKET DRIVERS	55

TECHCET-CMR-MetalChems-CMC-091322LS Copyright TECHCET CA, LLC 2022 all rights reserved

TABLE OF CONTENTS

4.3.1 ADVANCED PACKAGING - ADDITIVES FOR CU	
PLATING REVENUE	50
4.3.2 ADVANCED PACKAGING – COPPER CHEMICALS REVENUE	57
4.3.3 ADVANCED PACKAGING ADDITIVE VOLUMES	58
4.3.4 OTHER PLATING MATERIALS FOR ADVANCED PACKAGING	59
4.3.5 SN / SNAG PLATING	60
4.3.5.1 WW NI PLATING MARKET FORECAST	6
4.4 DAMASCENE GROWTH TRENDS	62
4.4.1 DAMASCENE GROWTH DRIVERS	63
4.4.2 DAMASCENE CU PLATING REVENUES	64
4.4.3 DAMASCENE ADDITIVE VOLUMES	65
5 TECHNICAL TRENDS	60
5.1 PACKAGING TECH TRENDS	67
5.1.1 PACKAGING TECHNICAL CHALLENGES	68
5.2 TECH TRENDS	69
5.2.1 MARKET DRIVES TECHNOLOGY TRENDS	70
5.2.2 ADV LOGIC INTERCONNECT WIRING TECHNOLOGY EVOLUTION	7
5.2.2.1 TRENDS - MOL AND BEOL IRDS ROADMAP	72
5.2.3 CU DAMASCENE QUALIFICATION REQUIREMENTS	73
5.2.4 LOGIC METALLIZATION ROADMAP	74
5.2.4.1 INTERCONNECT FOR ADVANCED LOGIC	75
5.2.5 ADV LOGIC BURIED POWER RAIL	70
5.2.6 TECHNOLOGY ROADMAP: DRAM WITH MO OR RU	77
5.2.6.1 GENERAL PROCESS FLOW ADVANCED DRAM	78

5.2.7 PRECURSOR TECHNOLOGY ROADMAP: 3D NAND USING MO	
OR RU	79
5.2.7.1 3D-NAND GENERATIONS 2020 -2025	80
5.2.8 EXAMPLE OF LOGIC PROCESS FLOW 20 NM TO 32 NM	
LOGIC PVD	81
5.2.8 TECHNICAL REQUIREMENTS SUMMARY 1/2	82
5.2.8.1 TECHNICAL REQUIREMENTS SUMMARY 2/2	83
6 COMPETITIVE LANDSCAPE	84
6.1 TOTAL ADVANCED PACKAGING AND DAMASCENE	
MARKET SHARES	85
6.2 OEM MARKET SHARE- PLATING EQUIPMENT	86
6.3 MARKET SHARE BY APPLICATION – CU PLATING FOR	
ADVANCED PACKAGING	87
6.4 REGIONAL PLAYERS AND OTHERS	88
6.5 M&A ACTIVITY	89
7 ANALYST ASSESSMENT	90
7.1 ADVANCED METAL PLATING APPLICATIONS MARKET	91
ASSESSMENT	
8 SUPPLIER PROFILES	90
BASF	
DUPONT	
CHANG CHUN GROUP	
INCHEON CHEMICAL COMPANY	
ISHIHARA CHEMICAL/UNICON JX NIPPON	
MINING AND METALS AND MORE	

9 APPENDIX A: PACKAGING TECH TRENDS

FIGURES & TABLES

FIGURES

FIGURE 1: PLATING MATERIALS FOR ADVANCED PACKAGING AND DEVICE CU INTERCONNECT REVENUES (\$M'S)	9
FIGURE 2: ADVANCED PACKAGING APPLICATIONS IN MILLIONS OF WAFERS	10
FIGURE 3: ADVANCED LOGIC DEVICES GROWTH FORECAST	11
FIGURE 4: COPPER PLATING CHEMICALS REVENUES (\$M'S)	
FOR ADVANCED PACKAGING & FE/DAMASCENE	12
FIGURE 5: TOTAL PLATING MARKET SHARES FOR ADVANCED	
PACKAGING AND SEMICONDUCTOR DEVICE MFG. 2022	13
FIGURE 6: GLOBAL ECONOMY AND THE ELECTRONICS SUPPLY	
CHAIN (2021)	25
FIGURE 7: WORLDWIDE SEMICONDUCTOR SALES	26
FIGURE 8: TECHCET'S TAIWAN SEMICONDUCTOR INDUSTRY INDEX*	27
FIGURE 9: 2022 SEMICONDUCTOR INDUSTRY REVENUE	
GROWTH FORECASTS	28
FIGURE 10: 2023 SEMICONDUCTOR INDUSTRY REVENUE	
GROWTH FORECASTS	28
FIGURE 11: SEMICONDUCTOR CHIP APPLICATIONS	29
FIGURE 12: MOBILE PHONE SHIPMENTS WW ESTIMATES	30
FIGURE 13: WORLDWIDE PC AND TABLET FORECAST, 2021, Q3	31
FIGURE 14: GLOBAL EV TRENDS	32
FIGURE 15: SEMICONDUCTOR SPEND PER VEHICLE TYPE	33
FIGURE 16: TSMC CONSTRUCTION SITE IN ARIZONA	35

FIGURE 17: CHIP EXPANSIONS 2021-2026 > US\$460 B	36
FIGURE 18: SEMICONDUCTOR CHIP MANUFACTURING REGIONS	
OF THE WORLD	37
FIGURE 19: 3-MONTH AVERAGE SEMICONDUCTOR EQUIPMENT	20
	38
FIGURE 20: OVERVIEW OF DEVICE TECHNOLOGY ROADMAP	39
FIGURE 21: EUROPE CHIP EXPANSION UPSIDE	44
FIGURE 22: TECHCET WAFER START FORECAST BY NODE	46
FIGURE 23: TECHCET MATERIALS FORECAST	48
FIGURE 24: PACKAGING METALLIZATION APPLICATIONS	50
FIGURE 25: USE OF SILICON INTERPOSER	51
FIGURE 26: VERSIONS OF TSV & PROCESS FLOW EXAMPLE	51
FIGURE 27: PLATING MATERIALS FOR ADVANCED PACKAGING	
AND DEVICE CU INTERCONNECT REVENUES (\$M'S)	52
FIGURE 28: CU PLATING CHEMICALS 5-YEAR FORECAST	53
FIGURE 29: ADVANCED PACKAGING APPLICATIONS IN MILLIONS	
OF WAFERS	55
FIGURE 30: CU PLATING ADVANCED PACKAGING	
REVENUE FORECAST ESTIMATES	56
FIGURE 31: CU PILLAR & CU RDL SEGMENTED FORECAST	57
FIGURE 32: ADV. PACKAGING CU/VMS VOLUME DEMAND FORECAST	58
FIGURE 33: ADV. PACKAGING CU PLATING ADDITIVES	
VOLUME DEMAND FORECAST	58
FIGURE 34: MATERIALS STACK USING CU PILLAR (< 40 UM PITCH)	59

6

FIGURES & TABLES

60
6
62
63
64
65
65
67
68
70
7
73
70
77
79
8
80
87
94
90
97

FIGURE 56: ADVANCED PACKAGING MARKET DRIVERS AND APPLICATIONS	98
FIGURE 57: COMPARISON WITH DAMASCENE- TYPE RDL	100
FIGURE 58: USE OF SILICON INTERPOSER	101
FIGURE 59: APPLE EXAMPLE INTERPOSERS	102
FIGURE 60: TSV PROCESS FLOW EXAMPLE	103
TABLES	
TABLE 1: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	23
TABLE 2: IMF ECONOMIC OUTLOOK*	24
TABLE 3: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES	
FORECAST 2021	34
TABLE 4: IRDS 2022 LOGIC CORE INTERCONNECT ROADMAP	72
TABLE 5: LOGIC DEVICE ROADMAP FOR METALS	74
TABLE 6: METALS REQUIRED FOR DEVICE FEATURES	75
TABLE 7: DRAM USE OF MO OR RU PRESENT & FUTURE	77
TABLE 8: GENERAL PROCESS FLOW ADVANCED DRAM	78
TABLE 9: 3D NAND MATERIAL CHANGES PRESENT & FUTURE	79
TABLE 10: NUMBER OF STACKS (S) & LAYERS (L) PER GENERATION OF	
3DNAND	80
TABLE 11: EXAMPLE OF LOGIC PROCESS FLOW 20 NM TO 32 NM	
LOGIC PVD	81
TABLE 12: TECHNICAL REQUIREMENTS SUMMARY 1/2	83
TABLE 13: TECHNICAL REQUIREMENTS SUMMARY 2/2	83
TABLE 14: REGIONAL PLAYERS – MARKET LEADER AND "OTHERS"	88
TABLE 15: CU PACKAGING APPLICATIONS AND REQUIREMENTS	105

7

2.1 SCOPE

- This report covers the Metal Chemicals market trends and supply-chain as it applied to **Advanced Packaging** (wafer level) and **Semiconductor Device Manufacturing** (damascene process).
- Included are forecasts for copper plating and additives, market shares, technical trends, and supplier profiles. Also included in the appendix is a supplier product comparison table of publicly available information on plating products used for advanced packaging.
- The report contains data and analysis from TECHCET's data base and Sr. Analyst experience, as well as that developed from primary and secondary market research. For more information on TECHCET Critical materials Reports[™] please go to <u>https://TECHCET.com</u>

2.2 PURPOSE

- This Critical Materials Report[™] (CMR) provides focused information for supply-chain managers, process
 integration and R&D directors, as well as business development managers, and financial analysts. The
 report covers information about key suppliers, issues/trends in the material supply chain, estimates on
 supplier market share, and forecast for the material segments.
- Providing current information and actionable content is the intent of the information contained within this report and the quarterly updates.
- As important as the supply side of the equations is the demand requirements of the market in terms of the economic variables, leading edge technology requirements and the wafer start forecast.

2.3 METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

2.4 OVERVIEW OF OTHER TECHCET CMRTM REPORTS

TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2019 can be found at <u>www.techcet.com</u> and are listed in the table below:

2022	CMR Report Schedule
1	CMP Pads and Slurry
2	Electronic Gases
3	Photoresist
4	Precursors - Dielectric Precursors
5	Precursors - Hi K / ALD CVD Metal Precursors
6	Silicon Wafers
7	Specialty Cleaning Chems / Wet Chems
8	Metal Chemicals
9	Targets
10	Equipment Components – Quartz
11	Equipment Components – Ceramics/SiC
12	Equipment Components- Si parts
13	Impact of Fab Expansion on EU Wet Chemicals
14	2021 Impact of Fab Expansion on US Wet Chemicals

