

Electronics Materials Information

2023-2024 Critical Materials ReportTM Photolithography Materials

Prepared By: Karey Holland, PhD

TECHCET CA LLC 11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

TECHCET-CMR-LITHO-CMCF-051623-CY Copyright TECHCET CA, LLC 2023 all rights reserved TECHCET Clients & CMC Members 2 Confidential www.techcet.com

Analyst Biography

Karey Holland, Ph.D. is Chief Strategist and Co-Founder of TECHCET. Dr Holland has specialized in advanced semiconductor transistor fabrication, including photolithography, CMP, ALD & CVD, metrology, and interconnect technologies for over 30 years. She was CTO of Revasum, Strategic Technical Marketing Manager at Edwards Vacuum, VP Process Technology at MegaFluid Systems, CTO of start-up NexPlanar, strategic marketing senior manager at FEI, on the Board of Directors at Nova Measuring Instruments, VP of technology at CMP pad supplier Thomas West, and CTO and VP of process technology at CMP OEM IPEC/SpeedFam-IPEC. Prior to IPEC, Dr. Holland was manager of manufacturing planning for Motorola's Microprocessor and Memory Technology Group. Her career began in process engineering at IBM. There, she was the manager of the first DUV-248nm lithography technology development team. Dr. Holland also worked on interconnect integration for 4 and 16 Mb DRAMs, which were the first chips in the world to use tungsten plugs and CMP for interconnect dielectrics. She holds a Ph.D. in analytical chemistry from Pennsylvania State University, a M.S. in analytical chemistry from Purdue University, and a B.A. in chemistry from Albion College.

Karey Holland, Ph.D. Chief Strategist and Co-Founder of TECHCET

TECHCET-CMR-LITHO-CMCF-051623-CY Copyright TECHCET CA, LLC 2023 all rights reserved

TECHCET Clients & CMC Members Confidential www.techcet.com

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY	9
1.1 MARKET TRENDS IMPACTING LITHOGRAPHY	10
1.2 TECHNICAL TRENDS IMPACTING LITHOGRAPHY	12
1.3 PHOTORESIST REVENUE 5-YEAR FORECAST	13
1.3.1 ANCILLARY AND EXTENSION REVENUE 5-YEAR FORECAST	14
1.4 YEAR 2022 IN REVIEW- 2022 LITHOGRAPHY TRENDS/ LESSONS	15
1.5 MARKET TRENDS IMPACTING LITHOGRAPHY MATERIALS OUTLOOK	16
1.6 COMPETITIVE LANDSCAPE	19
1.7 EHS ISSUES/CONCERNS n 0 PFAS	21
1.8. ANALYST ASSESSMENT	22
1.8.1 ANALYST TECHNOLOGY UPDATE	23
2 SCOPE, PURPOSE AND METHODOLOGY	26
2.1 PURPOSE	27
2.2 METHODOLOGY	28
2.3 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	29
3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	30
3.1 WORLDWIDE ECONOMY	31
3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	33
3.1.2 SEMICONDUCTOR SALES GROWTH	34
3.1.3 TAIWAN MONTHLY SALES TRENDS	35
3.1.4 UNCERTAINTY ABOUNDS ESPECIALLY FOR 2023 - SLOWER TO NEGA	TIVE
SEMICONDUCTOR REVENUE GROWTH EXPECTED	36

3.2 CHIPS SALES BY ELECTRONIC GOODS SEGMENT	37
3.2.1 Smartphones	38
3.2.2 PC UNIT SHIPMENTS	39
3.2.2.1 ELECTRIC VEHICLE (EV) MARKET TRENDS	40
3.2.2.2 INCREASE IN SEMICONDUCTOR CONTENT FOR AUTOS	41
3.2.3 SERVERS / IT MARKET	42
3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	43
3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	44
3.3.1.1 NEW FABS IN THE US	45
3.3.2 WW FAB EXPANSION DRIVING GROWTH	46
3.3.3 EQUIPMENT SPENDING TRENDS	47
3.3.4 TECHNOLOGY ROADMAPS	48
3.3.5 FAB INVESTMENT ASSESSMENT	49
3.4 POLICY & TRADE TRENDS AND IMPACT	50
3.5 SEMICONDUCTOR MATERIALS OVERVIEW	51
3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODUCTION SCHEDULES?	52
3.5.2 LOGISTICS ISSUES EASED DOWN	53
3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 2027	54
3.5.4 TECHCET'S MATERIAL FORECAST	55
4 PHOTORESIST SEGMENT	56
4.1 MARKET MACRO TRENDS	57
4.2 PHOTORESIST REVENUE FORECAST	59
4.2.1 EUV PHOTORESIST- MARKET OVERVIEW	60
4.2.2 ARF (193) & ARFI (193 IMMERSION) – MARKET OVERVIEW	61

TABLE OF CONTENTS

4.2.3 KRF (248NM) PHOTORESIST – MARKET OVERVIEW	62
4.2.4 G & I LINE – MARKET OVERVIEW	63
4.3 PHOTORESIST MARKET SHARES	64
4.3.1 PHOTORESIST SUPPLIER REFLECTION	65
4.3.2 SUPPLIERS PHOTORESIST	66
4.3.2.1 DUPONT SUPPLY CAPACITY AND DEMAND, INVESTMENTS	67
4.3.2.2 DONGJIN SUPPLY CAPACITY AND DEMAND, INVESTMENTS	68
4.3.2.3 FUJIFILM SUPPLY CAPACITY AND DEMAND, INVESTMENTS	69
4.3.2.4 JSR SUPPLY CAPACITY AND DEMAND, INVESTMENTS	70
4.3.2.5 MERCK KGAA, EMD ELECTRONICS SUPPLY CAPACITY AND DEMAND, INVESTMENTS	71
4.3.2.6 (SHIN-ETSU) SUPPLY CAPACITY AND DEMAND, INVESTMENTS	72
4.3.2.7 SUMITOMO SUPPLY CAPACITY AND DEMAND, INVESTMENTS	73
4.3.2.8 TOK SUPPLY CAPACITY AND DEMAND, INVESTMENTS	74
4.3.2.9 SUB-TIER SUPPLY-CHAIN "NEW" ENTRANTS	75
4.3.2.10 SUB-TIER SUPPLY-CHAIN CHINESE PRODUCERS	76
4.4 PHOTORESIST TECHNOLOGY TRENDS	77
4.4.1 PATTERNING TECHNOLOGY TRENDS	78
4.4.2 PRODUCTION LAYERS BY LITHOGRAPHIC EXPOSURE TYPE	79
4.4.3 3DNAND TECHNOLOGY TRENDS (INCREASING LITHOGRAPHY STEPS)	80
4.4.4 PHOTORESIST TECHNOLOGY TRENDS (PLATFORM TRANSITIONS)	82
4.4.4.1 THE EVOLUTION (A LITHO MATERIALS PERSPECTIVE): POLYMER PLATFORM TRANSITION AS WELL AS A DEVELOPER TRANSITION @ EUV	83

4.4.5 PATTERNING TRENDS	84
4.4.5.1 PATTERNING TECHNOLOGY TRENDS	85
4.4.5.2 DYNAMIC SELF ASSEMBLY PROCESS	86
4.4.6 KEY MATERIAL (MACRO)TECHNOLOGY TRENDS (PATTERNING MATERIAL TRANSITIONS TO WATCH)	87
4.5 REGIONAL TRENDS	88
4.5.1 REGIONAL TRENDS – MATERIAL COMPANY EXPANSIONS SUMMARY	89
4.6 EHS ISSUES	90
4.7 ASSESSMENT OF PHOTORESIST SEGMENT	92
5 ANCILLARY AND EXTENSIONS MARKET SEGMENT	95
5.1 MARKET LANDSCAPE FOR ANCILLARIES	96
5.2 ANCILLARY FORECASTS	97
5.2.1 ANCILLARIES (EBR, DEVELOPERS, PREWETS AND RINSES) VOLUMES FORECAST	98
5.2.2 ANCILLARIES (EDGE BEAD REMOVAL AND PREWET) REVENUE FORECAST	99
5.2.3 ANCILLARIES (EDGE BEAD REMOVAL AND PREWET) VOLUMES FORECAST	100
5.2.4 ANCILLARIES (NEGATIVE TONE RESIST DEVELOPER AND RINSE) REVENUES FORECAST	101
5.2.5 ANCILLARIES (NEGATIVE TONE RESIST DEVELOPER AND RINSE) VOLUMES FORECAST	102
5.2.6 ANCILLARIES (POSITIVE TONE RESIST DEVELOPER) REVENUE FORECAST	103
5.2.7 ANCILLARIES (POSITIVE TONE RESIST DEVELOPER) VOLUMES FORECAST	104

TECHCET-CMR-LITHO-CMCF-051623-CY Copyright TECHCET CA, LLC 2023 all rights reserved

TABLE OF CONTENTS

5.3 KEY SUPPLIERS OF EXTENSION MATERIALS	105
5.3.1 SELECT EXTENSION AND ANCILLARY SUPPLIERS	106
5.4 EXTENSION MATERIALS FORECASTS	107
5.4.1 EXTENSIONS (BOTTOM COATINGS) REVENUE FORECAST	108
5.4.2 EXTENSIONS (BOTTOM COATINGS) VOLUMES FORECAST	109
5.4.3 EXTENSIONS (SI BOTTOM ANTIREFLECTIVE COATINGS) REVENUE FORECAST	110
5.4.4 EXTENSIONS (SI BOTTOM ANTIREFLECTIVE COATINGS) VOLUMES FORECAST	111
5.4.5 EXTENSIONS (KRF BOTTOM ANTIREFLECTIVE COATINGS) REVENUE FORECAST	112
5.4.6 EXTENSIONS (KRF BOTTOM ANTIREFLECTIVE COATINGS) VOLUMES FORECAST	113
5.4.7 EXTENSIONS SPIN-ON CARBON BOTTOM ANTIREFLECTIVE COATING REVENUE FORECAST	114
5.4.8 EXTENSIONS SPIN-ON CARBON BOTTOM ANTIREFLECTIVE COATING VOLUMES FORECAST	115
5.4.9 EXTENSIONS (ARF BOTTOM ANTIREFLECTIVE COATINGS) REVENUE FORECAST	116
5.4.10 EXTENSIONS (ARF BOTTOM ANTIREFLECTIVE COATINGS) VOLUMES FORECAST	117
5.5 ANCILLARY AND EXTENSION MATERIALS TECHNOLOGIES	118
5.5.1 MATERIAL CHANGES DRIVEN BY NEW PROCESSES (193NM IMMERSION TO EUV)	119
5.5.2 THE DEVELOPER TRANSITION	120
5.5.3 SOLVENT IMPACT: TRANSITION FROM POSITIVE PHOTORESIST TO NEGATIVE PHOTORESIST	121
	_

TECHCET-CMR-LITHO-CMCF-051623-CY Copyright TECHCET CA, LLC 2023 all rights reserved

5.6 ANCILLARY SUPPLY LANDSCAPE (NON-PHOTORESIST MAKERS)	122
5.7 ANCILLARY AND EXTENSION MATERIALS ASSESSMENT	123
5.7.1 ANALYST ASSESSMENT (ANCILLARIES)	124
5.7.2 ANALYST ASSESSMENT (EXTENSIONS)	125
6 SUPPLY-CHAIN "NEW" ENTRANTS	126
6.1 SUPPLY-CHAIN "NEW" ENTRANTS- LAM RESEARCH	127
6.2 SUPPLY-CHAIN "NEW" ENTRANTS – S. KOREA – DONGJIN SEMICHEM	128
6.2.1 SUPPLY CHAIN EXPANSIONS – CHINA	129
6.3 SUB-TIER SUPPLY-CHAIN: DISRUPTIONS	130
6.4 SUPPLY-CHAIN PRICING TRENDS	131
6.5 SUPPLY-CHAIN OTHER THOUGHTS	132
6.6 REFERENCES	133
7 SUPPLIER PROFILES Avantor	135
AllresistGesellschaftfürchemische BASF	
BrewerScience ChangChunPetrochemical	
DongjinChemical	
and 20+ more	

FIGURES & TABLES

FIGURE 1: PHOTORESIST REVENUE FORECAST	13
FIGURE 2: TOTAL ANCILLARY AND EXTENSION REVENUE FORECAST	14
FIGURE 3: BOTTOM ANTI-REFLECTIVE COATINGS (BARCS) HOW THEY WORK, EXAMPLE	18
FIGURE 4: 2022 MARKET SHARE ESTIMATES OF TOP 3 PHOTORESIST COMPANIES	19
FIGURE 5: ASML EUV SYSTEM BEAM PATH NXE: 3400B	22
FIGURE 6: GLOBAL ECONOMY AND THE ELECTRONICS SUPPLY CHAIN (2022)	33
FIGURE 7: WORLDWIDE SEMICONDUCTOR SALES	34
FIGURE 8: TECHCET'S TAIWAN SEMICONDUCTOR INDUSTRY INDEX (TTSI)*	35
FIGURE 9: 2023 SEMICONDUCTOR INDUSTRY REVENUE GROWTH FORECASTS	36
FIGURE 10: 2022 SEMICONDUCTOR CHIP APPLICATIONS	37
FIGURE 11: MOBILE PHONE SHIPMENTS WW ESTIMATES	38
FIGURE 12: WORLDWIDE PC AND TABLET FORECAST	39
FIGURE 13: ELECTRIFICATION TREND BY WORLD REGION	40
FIGURE 14: SEMICONDUCTOR AUTOMOTIVE PRODUCTION	41
FIGURE 15: TSMC PHOENIX INVESTMENT ESTIMATED WILL BE US \$40 B	43
FIGURE 16: CHIP EXPANSIONS 2022-2027 US\$366 B	44
FIGURE 17: SEMICONDUCTOR CHIP MANUFACTURING REGIONS OF THE WORLD	46
FIGURE 18: GLOBAL TOTAL EQUIPMENT SPENDING BY SEGMENT (US\$ B)	47
FIGURE 19: OVERVIEW OF DEVICE TECHNOLOGY ROADMAP	48

TECHCET-CMR-LITHO-CMCF-051623-CY Copyright TECHCET CA, LLC 2023 all rights reserved

FIGURE 20: INTEL OHIO PLANT SITE FEB. 2023 AND ARTIST RENDERING

FIGURE 23: TECHCET WAFER START FORECAST BY NODE SEGMENTS**

FIGURE 24: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK

FIGURE 21: EUROPE CHIP EXPANSION UPSIDE

(ON BOTTOM)

FIGURE 22: PORT OF LA

FIGURES & TABLES

FIGURE 41: ANCILLARY REVENUES FORECAST	97
FIGURE 42: ANCILLARY VOLUME FORECAST	98
FIGURE 43: EBR AND PREWET REVENUE FORECAST	99
FIGURE 44: EBR AND PREWET VOLUME FORECAST	100
FIGURE 45: NTD CHEMICALS REVENUE FORECAST	101
FIGURE 46: NTD CHEMICALS VOLUME FORECAST	102
FIGURE 47: POSITIVE TONE DEVELOPER REVENUES FORECAST (US\$M)	103
FIGURE 48: PTD VOLUME FORECAST (KILOLITERS/YR)	104
FIGURE 49: EXTENSION MATERIALS REVENUE FORECAST	108
FIGURE 50: EXTENSION VOLUME FORECAST	109
FIGURE 51: SI BARC REVENUE FORECAST (US\$M)	110
FIGURE 52: SI BARC VOLUME FORECAST	111
FIGURE 53: KRF BARAC REVENUE FORECAST	112
FIGURE 54: KRF BARC VOLUME FORECAST	113
FIGURE 55: SOC REVENUE FORECAST	114
FIGURE 56: SOC VOLUME FORECAST	115
FIGURE 57: ARF BARC REVENUE FORECAST	116
FIGURE 58: ARF BARC VOLUMES/YEAR FORECAST	117
FIGURE 59: DEVELOPER TRANSITION	120
FIGURE 60: SOLVENT IMPACT FOR POSITIVE VS. NEGATIVE PHOTORESIST	121
FIGURE 61: LAM RESEARCH DRY RESIST	127

TABLES

TABLE 1: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	31
TABLE 2: IMF ECONOMIC OUTLOOK*	32
TABLE 3: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES MARKET SPENDING 2022	42
TABLE 4: REGIONAL SEMICONDUCTOR TRENDS	88
TABLE 5: REGIONAL LITHOGRAPHY MATERIALS SUPPLIER EXPANSION SUMMARY	89
TABLE 6: SOLVENT SUPPLIERS	96
TABLE 7: KEY SUPPLIERS OF EXTENSION MATERIALS	105
TABLE 8: ANCILLARY SUPPLIER LANDSCAPE	122

2.1 PURPOSE

- This Critical Materials Report[™] (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.
- This report covers the Photolithography materials market and supply chain for those materials used in semiconductor device fabrication. The report contains data and analysis from TECHCET's database and Sr. Analyst experience, as well as that developed from primary and secondary market research. For more information on TECHCET Critical materials Reports[™] please go to <u>https://TECHCET.com.</u> This report also highlights technology-driven impacts on photolithography materials.

2.2 METHODOLOGY

• TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

2.3 Overview of Other TECHCET CMRTM Reports

 TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2022 can be found at <u>www.techcet.com</u> and are listed in the table below:

TECHCET's Critical Materials Reports

- CMP Consumables (Pads & Slurry)
- 2 CMP Equipment Ancillaries (Conditioners, Filters, etc.)
- 3 CVD / ALD Hi K Precursors
- 4 CVD DIELECTRIC Precursors
- 5 Equipment Components Quartz
- Equipment Components Silicon
- Equipment Components SiC/Ceramics
- Gases Electronic Specialty, Bulk & Rare Gases
- Metal Plating Chemicals
- 10 Photoresists, Ancillaries & Extension Materials
- 1 Sputtering Targets
- 2 Wafers: Silicon, SOI
- 13 SiC Wafers & Manufacturing
- 14 Wet Chemicals / Specialty Cleans
- 15 Special Reports: Impact of US Expansions on Wet Chemicals Supply Chains

TECHCET-CMR-LITHO-CMCF-051623-CY Copyright TECHCET CA, LLC 2023 all rights reserved

