

2023-2024 CMRTM CVD/ALD/SOD DIELECTRIC PRECURSORS

Prepared By:

Jonas Sundqvist, PhD

TECHCET CA LLC

11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

Analyst Biography

Jonas Sundqvist, Ph.D. & Assoc. Prof. – Sr. Technology Analyst of TECHCET— covers Electronic Gases and ALD & CVD precursors and related technologies, and the cochair of the Annual Critical Materials Council (CMC) Conference. His over 20 years of work experience includes Group Leader of the Thin-Film Technologies Group at The Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) in Germany, Clean Room Operations Manager for Lund Nano Lab, Lund University in Sweden and Group Leader of the ALD & High-k devices group at Fraunhofer's Center Nanoelectronic Technologies (CNT) in Germany, which included 28nm node work for GLOBALFOUNDRIES Fab1.

Previously, at Infineon Memory Development Centre (MDC), he developed high-k and metal nitride ALD processes, and at Qimonda, he was a materials manager focused on the ALD/CVD precursors supply-chain. He holds a Ph.D. and an M.S. in inorganic chemistry from Uppsala University, Sweden & Institute for Micromanufacturing, Louisiana Teche, USA, a B.S. in electrical and electronics engineering from Lars Kagg, and nine patents and 40 related scientific publications.

Jonas Sundqvist is Assoc. Prof. at Linköping University, on the Scientific Committee for AVS ALD and has co-chaired ALD2016 Dublin Ireland, and the annual EFDS ALD for Industry Workshop in Germany and Co-Chair for the annual CMC Conference.

Jonas Sundqvist, Ph.D. Sr. Technology Analyst of TECHCET, Electronic Gases and ALD & CVD

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY	11	3.2 CHIPS SALES BY ELECTRONIC GOODS SEGMENT	31
1.1 REGIONAL TRENDS – DIELECTRIC PRECURSORS	12	3.2.1 SMARTPHONES	32
1.2 PRECURSOR MARKET – HISTORICAL AND 5-YEAR FORECAST	13	3.2.2 PC UNIT SHIPMENTS	33
1.3 DIELECTRIC PRECURSOR REVENUE 2021 TO 2027 (M USD)	14	3.2.3 SERVERS / IT MARKET	36
1.4 TECHNOLOGY TRENDS DIELECTRIC PRECURSORS	15	3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	37
1.5 CVD AND ALD EQUIPMENT MARKET	16	3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	38
1.6 ANALYST ASSESSMENT – PRECURSORS	17	3.3.2 WW FAB EXPANSION DRIVING GROWTH	40
		3.3.3 EQUIPMENT SPENDING TRENDS	41
2 SCOPE, PURPOSE AND METHODOLOGY	19	3.3.4 TECHNOLOGY ROADMAPS	42
2.1 SCOPE	20	3.3.5 FAB INVESTMENT ASSESSMENT	43
2.2 PURPOSE	21	3.4 POLICY & TRADE TRENDS AND IMPACT	44
2.3 METHODOLOGY	22	3.5 SEMICONDUCTOR MATERIALS OVERVIEW	45
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	23	3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODUCTION SCHEDULES?	46
3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	24	3.5.2 LOGISTICS ISSUES EASED DOWN	47
3.1 WORLDWIDE ECONOMY	25	3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 2027	48
3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	27	3.5.4 TECHCET'S MATERIAL FORECAST	49
3.1.2 SEMICONDUCTOR SALES GROWTH	28		
3.1.3 TAIWAN MONTHLY SALES TRENDS	29		
3.1.4 UNCERTAINTY ABOUNDS ESPECIALLY FOR 2023 - SLOWER TO			
NEGATIVE SEMICONDUCTOR REVENUE GROWTH EXPECTED	30		

TABLE OF CONTENTS

4 PRECURSOR MARKET IRENDS	50	4.6.4 3D NAND NODE HVM ESTIMATE	/8
4.1 MARKET TRENDS	51	4.6.5 SUMMARY OF OPPORTUNITIES BY DEVICE SEGMENT	83
4.1.1 MARKET TRENDS – WAFER STARTS	53	4.7 SEMICONDUCTOR PROCESS & MATERIALS TRENDS	84
4.1.2 MARKET TRENDS – WAFER STARTS LOGIC	54	4.7.1 ETCH PROCESS BY DEVICE TYPE—ATOMIC LAYER ETCHING ALE	85
4.1.3 MARKET TRENDS – WAFER STARTS DRAM	55	4.7.2 AREA SELECTIVE DEPOSITION	95
4.1.4 MARKET TRENDS – WAFER STARTS NAND	56	4.7.3 DIRECTED SELF ASSEMBLY (DSA) AND EUV	96
4.2 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	57	4.7.4 DIRECT SELF ASSEMBLY (DSA) AND EUV	97
4.2.1 WF6 DEMAND DRIVERS	59	4.7.5 2D TRANSITION METAL DICHALCOGENIDES (TMD)	98
4.3 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	60	4.7.6 DRY RESIST FOR EUV	99
4.4 REGIONAL TRENDS – DIELECTRIC PRECURSORS	61	4.7.7 UNDERLAYERS FOR EUV RESIST	102
4.4.1 REGIONAL TRENDS AND DRIVERS	62	4.7.8 OTHER APPLICATIONS – OPTICS	104
4.5 CVD AND ALD EQUIPMENT MARKET	64	4.8 EHS AND LOGISTIC ISSUES	105
4.5.1 WFE FORECAST: ALL TYPES	65	4.8.1 GREEN HOUSE GASES FROM SEMICONDUCTOR PRODUCTION	106
4.5.2 WFE FORECAST: DEPOSITION, ETCH & CLEAN, LITHOGRAPHY,	, ,	4.8.2 EUV AND ENERGY	109
METROLOGY ETC.	66	4.8.3 ASSESSING THE ENVIRONMENTAL IMPACT OF ATOMIC LAYER	
4.6 TECHNICAL DRIVERS / MATERIAL CHANGES AND TRANSITIONS BY DEVICE TYPE	67	DEPOSITION (ALD) PROCESSES AND PATHWAYS TO LOWER IT	110
4.6.1 GENERAL TREND LAST DECADE GOING FROM	-	4.9 CHANGES IN STANDARD PACKAGING/VALVE TYPES	111
PVD & LPCVD TO PECVD & ALD	68		
4.6.2 ADVANCED LOGIC NODE HVM ESTIMATE	69		
4.6.3 DRAM NODE HVM ESTIMATE	75		

TABLE OF CONTENTS

5 SEGMENT MARKET STATISTICS & FORECASTS	112	7 SUPPLIER PROFILES	133
5.1 PRECURSOR MARKET – HISTORICAL AND 5-YEAR FORECAST	113	ADEKA CORPORATION	
5.2 DIELECTRIC PRECURSOR REVENUE 2021 TO 2027 (M USD)	114	AIR LIQUIDE (MAKER, PURIFIER, SUPPLIER)	
5.2.1 ASSESSMENT DIELECTRIC PRECURSORS	115	AZMAX CO., LTD CITY CHEMICAL LLC	
5.3 M&A ACTIVITIES	117	DNF CO., LTD	
5.3.1 M&A ACTIVITIES – MERCK & MECARO	118	and 20+ more	
5.4 NEW PLANTS	119		
5.5 SUPPLIER PLANT CLOSURES – NONE REPORTED	124		
5.6 NEW ENTRANTS – DRY RESIST CONSORTIUM	125		
6 SUB TIER MATERIAL SUPPLY CHAIN	126		
6.1 SUB-TIER SUPPLY-CHAIN: INTRODUCTION	127		
6.2 LOGISTICS	128		
6.2.1 LOGISTICS, CONTINUED	129		
6.3 SUB-TIER SUPPLY-CHAIN "NEW" ENTRANTS - NONE REPORTED	130		
6.4 SUB-TIER SUPPLY-CHAIN PLANTS UPDATES-NEW – NONE REPOR	RTED 131		
6.5 SUB-TIER SUPPLY-CHAIN TECHCET ANALYST ASSESSMENT	132		

FIGURES		FIGURE 17: GLOBAL TOTAL EQUIPMENT SPENDING BY	
FIGURE 1: HARDMASK, LOW K DIELECTRIC PRECURSORS REGIONAL SHARES 2022	12	SEGMENT (US\$ B) FIGURE 18: OVERVIEW OF ADVANCED LOGIC DEVICE	41
FIGURE 2: TOTAL PRECURSOR MARKET, M USD	13	TECHNOLOGY ROADMAP	42
FIGURE 3 DIELECTRIC PRECURSOR MARKET 2021 TO 2027	14	FIGURE 19: INTEL OHIO PLANT SITE FEB. 2023 AND ARTIST RENDERING (ON BOTTOM)	43
FIGURE 4: CVD AND ALD TOTAL EQUIPMENT MARKET 2022 USD 17-18 BILLION	16	FIGURE 20: EUROPE CHIP EXPANSION UPSIDE	46
FIGURE 5: GLOBAL ECONOMY AND THE ELECTRONICS	10	FIGURE 21: PORT OF LA	47
SUPPLY CHAIN (2022)	27	FIGURE 22: TECHCET WAFER START FORECAST BY NODE SEGMENTS**	48
FIGURE 6: WORLDWIDE SEMICONDUCTOR SALES	28	FIGURE 23: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK	49
FIGURE 7: TECHCET'S TAIWAN SEMICONDUCTOR INDUSTRY INDEX (TTSI)*		FIGURE 24: FORECASTS – WAFER STARTS 2021 TO 2027	53
	29	FIGURE 25: FORECASTS – WAFER STARTS LOGIC 300 MM	54
FIGURE 8: 2023 SEMICONDUCTOR INDUSTRY REVENUE GROWTH FORECASTS	30	FIGURE 26: FORECASTS – WAFER STARTS DRAM 300 MM	55
FIGURE 9: 2022 SEMICONDUCTOR CHIP APPLICATIONS	31	FIGURE 27: FORECASTS – WAFER STARTS NAND 300 MM	56
FIGURE 10: MOBILE PHONE SHIPMENTS WW ESTIMATES	32	FIGURE 28: 3DNAND MARKET SHARE 2022	59
FIGURE 11: WORLDWIDE PC AND TABLET FORECAST	33	FIGURE 29: HARDMASK, LOW K DIELECTRIC PRECURSORS	
		regional shares 2022	61
FIGURE 12: ELECTRIFICATION TREND BY WORLD REGION	34	FIGURE 30: CVD AND ALD TOTAL EQUIPMENT MARKET 2022	
FIGURE 13: SEMICONDUCTOR AUTOMOTIVE PRODUCTION	35	USD 17-18 BILLION	64
FIGURE 14: TSMC PHOENIX INVESTMENT ESTIMATED WILL BE US \$40 B	37	FIGURE 31: SEMI 2022 SEMICONDUCTOR EQUIPMENT FORECAST	65
FIGURE 15: CHIP EXPANSIONS 2022-2027 US\$366 B	38	FIGURE 32: 2022 TECHINSIGHTS WFE SPENDING (TOP) AND	
FIGURE 16: SEMICONDUCTOR CHIP MANUFACTURING		2022 GARTNER WFE SPENDING PER NODE (BOTTOM)	66
REGIONS OF THE WORLD	40	FIGURE 33: 3D DEVICE ARCHITECTURES	68

FIGURE 34: LOGIC TECHNOLOGY NODE ROADMAP FOR	40	FIGURE 50: LAM ALE PROCESS	90
LEADING IDMS	69	FIGURE 51: ALD / ALE PROCESS ROADMAP	91
FIGURE 35: SAMSUNG START 3 NM PILOT RAMP USING GAA-FET TECHNOLOGY JUNE 2022	70	FIGURE 52: ALE PATENT ACTIVITY BY COMPANY THROUGH 2022	92
FIGURE 36: IMEC 2022 LOGIC ROADMAP	71	FIGURE 53: AREA SELECTIVE SIN DEPOSITION BY ALD (AVS ASD2022)	95
FIGURE 37: SCALING AND LITHOGRAPHY TRENDS – A HIGH COST		FIGURE 54: DSA AND EUS PROCESSES	96
IN CAPITAL EXPENDITURE, ENERGY AND EMISSIONS	72	FIGURE 55: RESIST RECTIFICATION WITH DSA	97
FIGURE 38: APPLIED MATERIALS CENTURA PATTERN SHAPING CLUSTER	73	FIGURE 56: TEM AND ARTIST RENDERING OF MONOLAYER	
FIGURE 39: DRAM TECHNOLOGY ROADMAP FOR LEADING IDMS	75	CHANNEL FORMATION	98
FIGURE 40: IP FILING IN THE FIELD OF 3DRAM IS ACCELERATING	76	FIGURE 57: EUV LITHOGRAPHY ENABLING GATE STRUCTURES AND PITCH SCALING	99
FIGURE 41: NAND TECHNOLOGY ROADMAP FOR LEADING IDMS	78	FIGURE 58: DRY RESIST FOR EUV SEM IMAGE	100
FIGURE 42: PATHWAYS FOR CONTINUED 3D NAND SCALING	79	FIGURE 59: SPIN ON CARBON (SOC) DIELECTRIC FOR EUV METAL	
FIGURE 43: 3DNAND STACK TRENDS FROM <100L TO 4 STACKS	80	OXIDE RESISTS PATTERNS AFTER LITHO	101
FIGURE 44: MEMORY STACK CHALLENGES FOR V-NAND	81	FIGURE 60: UNDERLAYER (DIELECTRIC) HARDMASKS TRENDS FOR	
FIGURE 45A: FINFET TO GAA TRANSISTOR DIAGRAMS SHOWING		NIGH NA EUV	102
SELECTIVE ETCHING IS NEEDED TO ADD RESS DEVICE COMPLEXITY	85	FIGURE 61: SPIN ON PRIMER (SOC) VS. HMDS PRIMER	103
FIGURE 45B: ALE PROCESS CYCLE	85	FIGURE 62: GREENHOUSE GAS CONTRIBUTIONS OF CHIP FAB MATERIALS	
FIGURE 46: PERIOD TABLE INDICATING CANDIDATES FOR ALE		AND EQUIPMENT	106
(ISOTROPIC ETCHING)	86	FIGURE 63: ENVIRONMENTAL IMPACT (GWP) OF VARIOUS PROCESSES	
FIGURE 47: APPLICATION OF ALE (ISOTROPIC ETCH)	87	AND GASES	107
FIGURE 48: ALD AND ALE COMBO PROCESS	88	FIGURE 64: CO2EQ OUTPUT FROM ETCH GASES	108
FIGURE 49: PLASMA AND THERMAL ALE PROCESSES	89	FIGURE 65: TOTAL EMISSIONS AND ENERGY USE PROJECTION PER	100
		LOGIC NODE	109

FIGURE 66: ENVIRONMENTAL IMPACT OF ALD	110
FIGURE 67: SEGMENTATION OF THE AMPOULE FLEET 2020 BASED ON NUMBER OF UNITS IN THE FIELD	111
FIGURE 68: TOTAL PRECURSOR MARKET, M USD	113
FIGURE 69: DIELECTRIC PRECURSOR MARKET 2021 TO 2027	114
FIGURE 70: TEOS	116
FIGURE 71: WHAT IS EUV DRY RESIST?	125
FIGURE 72: TYPICAL NON-HALIDE LIGANDS USED FOR ALD PRECURSORS	127
FIGURE 73: EXAMPLES OF PRECURSORS SUPPLIED BY SHIP	128
FIGURE 74: OCEAN CONTAINER PRICE INDEX - JULY '20 TO MARCH '23	129

TABLES

TABLE 1: DIELECTRIC PRECURSOR REVENUES BY REGION (US\$ M)	12
TABLE 2: 2017 TO 2027 5-YEAR CAGRS	13
TABLE 3: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	25
TABLE 4: IMF ECONOMIC OUTLOOK*	26
TABLE 5: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES MARKET SPENDING 2022	36
TABLE 6: DIELECTRIC PRECURSOR MARKET SIZE BY REGION	61
TABLE 7: REGIONAL WAFER MARKETS	62
TABLE 8: REGIONAL PRECURSOR MARKETS	63
TABLE 9: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE AND MATERIAL FOR LOGIC DEVICES	74
TABLE 10: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE AND MATERIAL FOR DRAM	77
TABLE 11: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE AND MATERIAL FOR 3DNAND	82
TABLE 12: GAS TRENDS AND OPPORTUNITIES BY DEVICE TYPE	83
TABLE 13: PRECURSOR 5-YEAR CAGR COMPARISON	11

2 SCOPE, PURPOSE AND METHODOLOGY

2.1 SCOPE

- This report provides market and technical trend information CVD/ALD dielectric and SOD precursors. For the last 20 years, there have been many research papers and patents published regarding ALD and CVD precursors specifically for the semiconductor industry. This report includes detail on the development path and roadmaps for new precursors and any current EHS and regulatory hurdles for these materials to enter into high volume manufacturing (HVM).
- Forecasts are provided on precursors of all types, with a focus is on the leading-edge front end of the line insulating and conductive materials, including sacrificial layers, low-k dielectrics, hard masks, mandrel, and etch stop layers. These process areas are of interest because of the high growth potential associated with leading-edge logic <45 nm, 28 nm to 10/7 nm nodes, and the future 5 & 3 nm nodes, as well as advanced DRAM and 3DNAND volatile and non-volatile memories.

2.2 Purpose

• This Critical Materials Report™ (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.

2.3 METHODOLOGY

• TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

2.4 Overview of Other TECHCET CMRTM Reports

 TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2022 can be found at www.techcet.com and are listed in the table below:

T	ECHCET's Critical Materials Reports™
1	CMP Consumables (Pads & Slurry)
2	CMP Equipment Ancillaries (Conditioners, Filters, etc.)
3	CVD /ALD Hi K Precursors
4	CVD DIELECTRIC Precursors
5	Equipment Components – Quartz
6	Equipment Components - Silicon
7	Equipment Components – SiC/Ceramics
8	Gases - Electronic Specialty, Bulk & Rare Gases
9	Metal Plating Chemicals
10	Photoresists, Ancillaries & Extension Materials
11	Sputtering Targets
12	Wafers: Silicon, SOI
13	SiC Wafers & Manufacturing
14	Wet Chemicals / Specialty Cleans
15	Special Reports: Impact of US Expansions on Wet Chemicals Supply Chains

