

Electronics Materials Information

2023-2024 CMR[™] ELECTRONIC GASES

Bulk & Specialty Gases

Prepared By: Jonas Sundqvist, PhD

TECHCET CA LLC 11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

TECHCET Electronics Materials Information

TECHCET-CMR-Gases-CMCF-051723CY Copyright TECHCET CA, LLC 2023 all rights reserved TECHCET Clients & CMC Members Confidential www.techcet.com

Analyst Biography

- Jonas Sundqvist, Ph.D. Sr. Technology Analyst of TECHCET & Assoc. Prof. in Chemistry at Linköping University, Sweden — covers Electronic Gases and ALD & CVD precursors and related technologies, and the co-chair of the Annual Critical Materials Council (CMC) Conference. His over 20 years of work experience includes Group Leader of the Thin-Film Technologies Group at The Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) in Germany, Clean Room Operations Manager for Lund Nano Lab, Lund University in Sweden and Group Leader of the ALD & High-k devices group at Fraunhofer's Center Nanoelectronic Technologies (CNT) in Germany, which included 28nm node work for GLOBALFOUNDRIES Fab1.
- Previously, at Infineon Memory Development Centre (MDC), he developed high-k and metal nitride ALD processes and equipment, and at Qimonda, he was a materials manager focused on the ALD/CVD precursors supply-chain. He holds a Ph.D. and an M.S. in inorganic chemistry from Uppsala University, Sweden & Institute for Micromanufacturing, Louisiana Techet, USA, a B.S. in electrical and electronics engineering from Lars Kagg, and nine patents and 40 related scientific publications.
- Jonas Sundqvist is on the Scientific Committee for AVS ALD and has co-chaired ALD2016 Dublin Ireland, and the annual EFDS ALD for Industry Workshop in Germany. He is the Co-Chair of the annual Critical Materials Conference organized by TECHCET LLC CA.

Jonas Sundqvist, Ph.D. Sr. Technology Analyst of TECHCET, Electronic Gases and ALD & CVD

TECHCET-CMR-Gases-CMCF-051723CY Copyright TECHCET CA, LLC 2023 all rights reserved

1 EXECUTIVE SUMMARY

1.1 ELECTRONIC GAS MARKET – HISTORICAL AND 5-YEAR FORECAST	14
1.2 MARKET DRIVERS FOR THE SPECIALTY GAS MARKET	15
1.2.1 SPECIALTY GAS MARKET: 5-YEAR SUPPLY & DEMAND	16
1.3 MARKET TRENDS	17
1.4 TECHNOLOGY TRENDS- DEVICE ROADMAP	21
1.4.1 TECHNOLOGY TRENDS – DEVICE SEGMENT OPPORTUNITIES	22
1.5 COMPETITIVE LANDSCAPE- ELECTRONIC GAS MARKET SHARE	23
1.6 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	24
1.7 EHS AND LOGISTIC ISSUES- GREEN HOUSE GASES FROM LOGIC PRODUCTION	25
1.8 MARKET ASSESSMENT SUMMARY	28
2 SCOPE, PURPOSE AND METHODOLOGY	30
2.1 SCOPE	31
2.2 PURPOSE	32
2.3 METHODOLOGY	33
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	34

3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	35
3.1 WORLDWIDE ECONOMY	36
3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	38
3.1.2 SEMICONDUCTOR SALES GROWTH	39
3.1.3 TAIWAN MONTHLY SALES TRENDS	40
3.1.4 UNCERTAINTY ABOUNDS ESPECIALLY FOR 2023 - SLOWER TO NEGATIVE SEMICONDUCTOR REVENUE GROWTH EXPECTED	41
3.2 CHIPS SALES BY ELECTRONIC GOODS SEGMENT	42
3.2.1 SMARTPHONES	43
3.2.2 PC UNIT SHIPMENTS	44
3.2.3 SERVERS / IT MARKET	47
3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	48
3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	49
3.3.2 WW FAB EXPANSION DRIVING GROWTH	51
3.3.3 EQUIPMENT SPENDING TRENDS	52
3.3.4 TECHNOLOGY ROADMAPS	53
3.3.5 FAB INVESTMENT ASSESSMENT	54
3.4 POLICY & TRADE TRENDS AND IMPACT	55

3.5 SEMICONDUCTOR MATERIALS OVERVIEW	56
3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODUCTION SCHEDULES?	57
3.5.2 LOGISTICS ISSUES EASED DOWN	58
3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 2027	59
3.5.4 TECHCET'S MATERIAL FORECAST	60
4 ELECTRONIC GASES MARKET TRENDS	61
4.1 MARKET TRENDS DRIVING THE ELECTRONIC GAS BUSINESS	62
4.2 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	64
4.2.1 WF6 DEMAND DRIVERS	67
4.2.2 WF6 MARKET DEMAND	68
4.2.3 WF6 MARKET DEMAND- MO ALD IP FILING	70
4.2.4 WF6 MARKET DEMAND	71
4.3 TECHNICAL DRIVERS / MATERIAL CHANGES AND TRANSITIONS	72
4.3.1 GENERAL TREND LAST DECADE GOING FROM PVD & LPCVD TO PECVD	73
4.3.2 MARKET TRENDS BY DEVICE TYPE AND NODE – ADVANCED DEVICES	74
4.3.3 MARKET TRENDS- ADVANCED LOGIC	75

4.3.4 MARKET TRENDS- WAFER STARTS DRAM	79
4.3.5 MARKET TRENDS- WAFER STARTS NAND	81
4.3.6 DEPOSITION PROCESS BY DEVICE TYPE AND MATERIAL- AN OVERVIEW	84
4.3.7 ETCH PROCESS BY DEVICE TYPE- ATOMIC LAYER ETCHING ALE	86
4.3.8 SUMMARY OF TECHNICAL TRENDS AND OPPORTUNITIES	92
4.4 REGIONAL TRENDS	93
4.4.1 REGIONAL TRENDS – LINDE	94
4.4.2 REGIONAL TRENDS- AIR LIQUIDE	95
4.4.3 REGIONAL TRENDS- AIR PRODUCTS	96
4.4.5 REGIONAL TRENDS- TAIYO NIPPON SANO	97
4.4.6 REGIONAL TRENDS- KOREA	98
4.4.7 REGIONAL TRENDS- JAPAN	99
4.4.8 REGIONAL TRENDS- JAPAN & KOREA	100
4.3.15 REGIONAL TRENDS- CHINA	101
4.4.9 REGIONAL TRENDS – RUSSIA	102
4.4.10 REGIONAL TRENDS USA	103
4.5 GENERAL COMMENTS ON SPECIFICATIONS AND PURITY	106
4.6 ELECTRONIC GAS SUPPLY CHAIN RISK FACTORS	107

TECHCET-CMR-Gases-CMCF-051723CY Copyright TECHCET CA, LLC 2023 all rights reserved

TECHCET-CMR-Gases-CMCF-051723CY

Copyright TECHCET CA, LLC 2023 all rights reserved

4.6.1 GEOPOLITICAL RISKS	108
4.6.2 RUSSIA RISKS	109
4.6.3 SUPPLY CHAIN RISKS- RAW MATERIAL PRICING	110
4.6.4 LOGISTICS	111
4.7 MARKET TRENDS ASSESSMENT	112
5 EHS AND SUSTAINABILITY ISSUES	113
5.1 EHS AND LOGISTIC ISSUES- GREEN HOUSE GASES FROM SEMICONDUCTOR PRODUCTION	114
5.1.2 EHS AND LOGISTIC ISSUES- GREEN HOUSE GASES FROM SEMICONDUCTOR PRODUCTION, CONTINUED	115
5.2 EHS AND LOGISTICS ISSUES	116
5.3 EHS AND LOGISTIC ISSUE – GREEN HOUSE GASES FROM SEMICONDUCTOR PRODUCTION	117
5.4 EHS AND LOGISTIC ISSUES- GREEN HOUSE GASES FROM AIR GASES (NEON)	118
5.4.1 ASU ENERGY CONSUMPTION - GHG EMISSIONS	119
5.4.2 ASU ENERGY CONSUMPTION - GHG EMISSIONS	120
5.4.3 CARBON FOOTPRINT OF SHIFTING NEON SUPPLY FROM UKRAINE TO CHINA	121
5.4.4 CARBON FOOTPRINT OF NEON PRODUCTION	122
5.4.5 CARBON FOOTPRINT OF NEON SHIPPING IN GAS ISO CONTAINER	123

5.4.6 DRAFT CALCULATION TRANSPORT: CHINA VS UKRAINE	124
5.5 SUSTAINABLE SEMICONDUCTOR PROCESSES AND MANUFACTURING TECHNOLOGIES	125
5.6 HELIUM – SUSTAINABLE PRODUCTION – GREEN HELIUM	126
5.7 HELIUM – SUSTAINABLE PRODUCTION – GREEN HELIUM	127
5.8 NF3 REPLACEMENT: F2 GAS	128
5.8.1 FLUORINATED GAS REGULATIONS	129
5.8.2 FLUORINATED GAS REGULATIONS, CONTINUED	130
5.8.3 LINDE F-GAS INSTALLATION	131
5.8.4 ENVIRONMENT REGULATION RISK- IMPLEMENTED TREATIES AND PROTOCOLS	132
6 ELECTRONIC GASES MARKET STATISTICS & FORECASTS	133
6.1 ELECTRONIC GAS MARKET- HISTORICAL AND 5-YEAR FORECAST	134
6.1.1 INDUSTRIAL GAS MARKET	135
6.1.2 ELECTRONIC GAS MA	136
6.1.3 SUPPLIER LIST, FINANCIALS AND PROFILES	137
6.1.4 MARKET DRIVERS FOR THE SPECIALTY GAS MARKET	138
6.2 SPECIALTY GAS MARKET: 5-YEAR SUPPLY & DEMAND RKET SHARE	139
	1.40
6.2.1 HE 5-YEAR SUPPLY & DEMAND	140

6.2.1 HE 5-YEAR SUPPLY & DEMAND, CONTINUED	141
6.2.2 NE 5-YEAR SUPPLY & DEMAND	142
6.2.3 NEON	143
6.2.4 XE 5-YEAR SUPPLY & DEMAND	144
6.2.5 NF3 5-YEAR SUPPLY & DEMAND	146
6.2.6 TUNGSTEN HEXAFLUORIDE 5-YEAR SUPPLY & DEMAND	147
6.3 M&A ACTIVITIES	148
6.4 NEW PLANTS	149
6.4.1 NEW PLANTS, LINDE EXPANSIONS 2023	152
6.4.2 NEW PLANTS, AIR LIQUIDE EXPANSIONS 2022/2023	153
6.4.3 NIHON SUO HOLDING CO., LTD. TO INCREASE DIBORANE CAPACITY	154
6.5 SUPPLIER PLANT CLOSURES	155
6.5.1 NEW ENTRANTS- SK MATERIALS, SHOWA DENKO SEEK JOINT ENTRY INTO US SEMICONDUCTOR GAS MARKET	156
6.5.2 NEW ENTRANTS- RESONAC	157
6.5.3 NEW ENTRANTS- NEON, CHINA	158
6.6 PRICING TRENDS	159
6.7 GAS SUPPLY ASSESSMENT	160

7 SUB TIER MATERIAL SUPPLY CHAIN	161
7.1 SALES CHANNELS	162
7.2 LOGISTICS REQUIREMENTS	163
7.2.1 SUB-TIER SUPPLY-CHAIN: TUNGSTEN DISRUPTIONS	164
7.3 SUB-TIER SUPPLY-CHAIN M&A ACTIVITY	166
7.4 SUB-TIER SUPPLY-CHAIN EHS AND LOGISTICS ISSUES	167
7.5 SUB-TIER SUPPLY-CHAIN PRICING TRENDS	168
7.6 SUB-TIER SUPPLY-CHAIN TECHCET ANALYST ASSESSMENT	169
8 SUPPLIER PROFILES	170
AIR LIQUIDE AIR PRODUCTS AIR WATER CRYOIN ENGINEERING DUPONT And 20+ more	

TECHCET-CMR-Gases-CMCF-051723CY Copyright TECHCET CA, LLC 2023 all rights reserved

288
289
290
291
294
295
296
297
298
299
300
301
302
303

FIGURES

FIGURE 1: ELECTRONIC GAS MARKET	14
FIGURE 2: ELECTRONIC GAS MARKET SEGMENTATION	15
FIGURE 3: TECHCET WAFER START FORECAST BY NODE	17
FIGURE 4: TECHNOLOGY ROADMAP DEVICES	21
FIGURE 5: TOTAL ELECTRONIC GAS MARKET SHARE 2021, US\$6,3 BILLION	23
FIGURE 6: AIR GAS BOILING POINT	25
FIGURE 7: COMPARISON OF CO2 EMISSIONS FROM VARIOUS TRANSPORTATION MODES	26
FIGURE 8: OCEAN CONTAINER PRICE INDEX - JULY '20 TO MARCH '23	27
FIGURE 9: GLOBAL ECONOMY AND THE ELECTRONICS SUPPLY CHAIN (2022)	38
FIGURE 10: WORLDWIDE SEMICONDUCTOR SALES	39
FIGURE 11: TECHCET'S TAIWAN SEMICONDUCTOR INDUSTRY INDEX (TTSI)*	40
FIGURE 12: 2023 SEMICONDUCTOR INDUSTRY REVENUE GROWTH FORECASTS	41
FIGURE 13: 2022 SEMICONDUCTOR CHIP APPLICATIONS	42
FIGURE 14: MOBILE PHONE SHIPMENTS WW ESTIMATES	43
FIGURE 15: WORLDWIDE PC AND TABLET FORECAST	44
FIGURE 16: ELECTRIFICATION TREND BY WORLD REGION	45

FIGURE 17: SEMICONDUCTOR AUTOMOTIVE PRODUCTION	46
FIGURE 18: TSMC PHOENIX INVESTMENT ESTIMATED WILL BE US \$40 B	48
FIGURE 19: CHIP EXPANSIONS 2022-2027 US\$366 B	49
FIGURE 20: SEMICONDUCTOR CHIP MANUFACTURING REGIONS OF THE WORLD	51
FIGURE 21: GLOBAL TOTAL EQUIPMENT SPENDING BY SEGMENT (US\$ B)	52
FIGURE 22: OVERVIEW OF ADVANCED LOGIC DEVICE TECHNOLOGY ROADMAP	53
FIGURE 23: INTEL OHIO PLANT SITE FEB. 2023 AND ARTIST RENDERING (ON BOTTOM)	54
FIGURE 24: EUROPE CHIP EXPANSION UPSIDE	57
FIGURE 25: PORT OF LA	58
FIGURE 26: TECHCET WAFER START FORECAST BY NODE SEGMENTS**	59
FIGURE 27: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK	60
FIGURE 28: 2D PHASE OF BORON AS POSSIBLE FUTURE TRANSISTOR CHANNEL	66
FIGURE 29: 3DNAND MARKET SHARE 2022	67
FIGURE 30: 3DNAND STRUCTURE	68
FIGURE 31: MO PRECURSORS	69
FIGURE 32: PATENT FAMILIES FILED FOR MOLYBDENUM ALD IN THE MEMORY SPACE.	70

TECHCET-CMR-Gases-CMCF-051723CY Copyright TECHCET CA, LLC 2023 all rights reserved

FIGURE 33:WAFER START FORECAST SHOWING TWO TIMING SCENARIOS WHERE MO COULD BE INTRODUCED (MILLIONS OF	
200 MM EQUIVALENT / YEAR)	71
FIGURE 34: 3D DEVICE ARCHITECTURES	73
FIGURE 35: FORECASTS – WAFER STARTS 2021 TO 2027	74
FIGURE 36: FORECASTS – WAFER STARTS LOGIC 300 MM	75
FIGURE 37: SAMSUNG START 3 NM PILOT RAMP USING GAA-FET TECHNOLOGY JUNE 2022	76
FIGURE 38: IMEC 2022 LOGIC ROADMAP	77
FIGURE 39: APPLIED MATERIALS CENTURA PATTERN SHAPING CLUSTER	78
FIGURE 40: FORECASTS – WAFER STARTS DRAM 300 MM	79
FIGURE 41: IP FILING IN THE FIELD OF 3DRAM IS ACCELERATING	80
FIGURE 42: FORECASTS – WAFER STARTS NAND 300 MM	81
FIGURE 43: PATHWAYS FOR CONTINUED 3D NAND SCALING	82
FIGURE 44: 3DNAND SCALING FROM 1 STACK TO 4 STACKS	83
FIGURE 45: SELECTIVE W LOWERS RESISTANCE	85
FIGURE 46: FINFET/GAA TRANSITION	86
FIGURE 47: SELECTIVITY IMPROVEMENT WITH ALE	87
FIGURE 48: ALD AND ALE ROADMAPS OF INTEL, TSMC AND SAMSUNG	88

FIGURE 49: DEP - ALE STI FILL AND RECESS ETCH	90
FIGURE 50: PLASMA AND THERMAL ALE PROCESSES	91
FIGURE 51: AIR LIQUIDE FINANCIALS (ANNUAL REPORT 2022 PENDING)	95
FIGURE 52: KOREA 2021 NEON IMPORTS	98
FIGURE 53: RESONAC BUSINESS SEGMENT REVENUE 2022	99
FIGURE 54: TOTAL HELIUM PRODUCTION 160 MILLION M3	102
FIGURE 55: FLUORSPAR PRICE IN US 2014-2022	110
FIGURE 56: OCEAN CONTAINER PRICE INDEX - JULY '20 TO MARCH '23	111
FIGURE 57: CO2 EMISSIONS CONTRIBUTIONS WITHIN A CHIP FAB	114
FIGURE 58: GLOBAL WARMING IMPACT FROM VARIOUS PROCESS GASES	115
FIGURE 59: TOTAL EMISSIONS AND ENERGY USE PROJECTION PER LOGIC NODE	116
FIGURE 60: CO2EQ OUTPUT FROM ETCH GASES	117
FIGURE 61: AIR SEPARATION UNIT FLOW CHART	118
FIGURE 62: AIR GAS BOILING POINT	119
FIGURE 63: CARBON GENERATION FROM AIR SEPARATION PROCESSES	120
FIGURE 64: COMPARISON OF CO2 EMISSIONS FROM VARIOUS TRANSPORTATION MODES	123

FIGURE 65: F2 AND NF3 ACTIVATION	128
FIGURE 66: ELECTRONIC GAS MARKET	134
FIGURE 67: TOTAL INDUSTRIAL GAS MARKET 2021, US\$97 BILLION	135
FIGURE 68: TOTAL ELECTRONIC GAS MARKET 2021, US\$6,3 BILLION	136
FIGURE 69: ELECTRONIC GAS MARKET SEGMENTATION	138
FIGURE 70: HE WW SUPPLY AND DEMAND	140
FIGURE 71: 2027 HELIUM SUPPLY	141
FIGURE 72: TOTAL NEON DEMAND VS. SUPPLY	142
FIGURE 73: KOREA 2021 NEON IMPORTS	143
FIGURE 74: TOTAL XENON DEMAND VS. SUPPLY (MILLION LITERS/YR)	144
FIGURE 75: TOTAL KRYPTON DEMAND VS. SUPPLY (MILLION LITERS/YR)	145
FIGURE 76: NF3 SUPPLY/DEMAND	146
FIGURE 77: AWF6 FORECAST	147
FIGURE 78: HARDMASK SCHEMATIC	154
FIGURE 79: LATEST SITUATION MAP IN UKRAINE, SHOWING TAKEN MAURIUPOL BUT ODESSA STILL FREE	155
FIGURE 80: RESONAC BUSINESS SEGMENT REVENUE 2022	157
FIGURE 81: RARE GAS PRICE ESCALATION	159

FIGURE 82: HE MATERIALS SUPPLIER TIER STRUCTURE	162
FIGURE 83: TUNGSTEN USE BY INDUSTRY (TECHCET ESTIMATE)	165
FIGURE 84: ELECTRONIC SPECIALTY GASES	293
FIGURE 85: BULK GASES	293
TABLES	
TABLE 1: SPECIALTY AND BULK GAS REVENUE 2022, 2027	14
TABLE 2: ELECTRONIC GAS MARKET GROWTH RATES BY END MARKET	15
TABLE 3: 5-YEAR SPECIALTY GAS SUPPLY & DEMAND	16
TABLE 4: GAS TRENDS AND OPPORTUNITIES BY DEVICE TYPE & PROCESS TECHNOLOGY	22
TABLE 5: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	36
TABLE 6: IMF ECONOMIC OUTLOOK*	37
TABLE 7: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES MARKET SPENDING 2022	47
TABLE 8: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE AND MATERIAL	84
TABLE 9: ETCH GASES SUMMARY TABLE	91
TABLE 10: GAS TRENDS AND OPPORTUNITIES BY DEVICE TYPE	92
TABLE 11: LINDE FINANCIALS AND REGIONAL SALES	94

TABLE 12: AIR PRODUCTS REGIONAL FINANCIALS	96
TABLE 13: TAIYO NIPPON SANSO REGIONAL FINANCIALS	97
TABLE 14: ESTIMATED SUPPLY CHAIN SUPPLIER RANKING	104
TABLE 15: REGIONAL SUMMARY OF GAS MARKET	105
TABLE 16: CO2 EMISSIONS PER TONS SHIPPED BY OCEAN, TRUCK OR	RAIL 124
TABLE 17: GAS GWP AND ATMOSPHERIC LIFETIME	128
TABLE 18: ELECTRONIC GAS MARKET SIZE AND GROWTH	134
TABLE 19: TOTAL REVENUE 2022 COMPARED TO 2021 OF MAJOR GAS COMPANIES AND GAS SUPPLIERS	137
TABLE 20: ELECTRONIC GAS MARKET GROWTH RATES BY END MARKE	ET 138
TABLE 21: 5-YEAR SPECIALTY GAS SUPPLY & DEMAND	139
TABLE 22: M&A ACTIVITIES	148
TABLE 23: SPECIALTY GAS INDUSTRY MATRIX	289
TABLE 24: GASES USED IN FPD MANUFACTURING	292
TABLE 25: HYDRIDE GAS SUPPLIERS	295
TABLE 26: SILICON PRECURSOR SUPPLIERS	296

TABLE 27: ETCHANT GAS SUPPLIERS29	7
TABLE 28: DEPOSITION/MISC. GAS SUPPLIERS29	8
TABLE 29: BULK GAS SUPPLIERS29	9
TABLE 30: ETCH ROADMAPS30	1
TABLE 31: ETCH ROADMAPS30	2
TABLE 32: ETCH ROADMAPS30	3

2 Scope, Purpose and Methodology

2.1 Scope

- This report covers the electronic gas materials market and supply-chain for these materials used in semiconductor device fabrication. The report contains data and analysis from TECHCET's data base and Sr. Analyst experience, as well as that developed from primary and secondary market research. For more information on TECHCET Critical materials Reports™ please go to https://TECHCET.com
- One of the challenges that the gas companies encounter is profitability due to the timing of investments and industry downturns for large installations like Air Separation Units (ASUs) and Semiconductor fabs. In the meantime, new suppliers are emerging in the China market to support the "Made in China" program backed by the government. When these suppliers gain in capability and capacity, their influence could dramatically impact the gas supply chain in the next 3+ years.

2.2 PURPOSE

• This Critical Materials Report[™] (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.

2.3 METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's
analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC
manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and
future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in
a viable long-term market forecast for a variety of process materials.

2.4 OVERVIEW OF OTHER TECHCET CMRTM REPORTS

TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2022 can be found at <u>www.techcet.com</u> and are listed in the table below:

TECHCET's Critical Materials Reports™

- CMP Consumables (Pads & Slurry)
- 2 CMP Equipment Ancillaries (Conditioners, Filters, etc.)
- 3 CVD / ALD Hi K Precursors
- 4 CVD DIELECTRIC Precursors
- 5 Equipment Components Quartz
- 6 Equipment Components Silicon
- Equipment Components SiC/Ceramics
- 8 Gases Electronic Specialty, Bulk & Rare Gases
- 9 Metal Plating Chemicals
- 10 Photoresists, Ancillaries & Extension Materials
- 1 Sputtering Targets
- 12 Wafers: Silicon, SOI
- 13 SiC Wafers & Manufacturing
- 14 Wet Chemicals / Specialty Cleans
- 5 Special Reports: Impact of US Expansions on Wet Chemicals Supply Chains

TECHCET-CMR-Gases-CMCF-051723CY Copyright TECHCET CA, LLC 2023 all rights reserved

