

2023-2024 TECHCET CRITICAL MATERIALS REPORTTM

WET CHEMICALS AND SPECIALTY CLEANING CHEMISTRY

Prepared By:

Terry Francis

With contributions from

Karey Holland, PhD, and Dan Tracy

TECHCET CALLC

11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

Analyst Biography

Terry Francis
Director of Technology &
Sr. Analyst of TECHCET

Director of Technology & Sr. Analyst of TECHCET— covers metal chemicals and specialty wet cleans. His work experience includes CTO, Sr. Director, Technical application expert, process manager and engineering management from companies such as Matheson, Air Products, Applied Materials, Burroughs, NCR, AMI, and National Semiconductor. He has over 40 years of experience in the semiconductor industry and has managed businesses from \$2M to over \$100M in revenues.

In addition, he is experienced in material, chemical, and electrical engineering as well as the R&D and development programs in the Chemical/OEM/IDM sectors in the microelectronic industry. He holds a M.B.A. from National University, and a B.S. in chemistry from Oregon State University.

1 EXECUTIVE SUMMARY	12	3.2 CHIPS SALES BY ELECTRONIC GOODS SEGMENT	33
1.1 2023 CHEMICAL CMR REPORT OVERVIEW	13	3.2.1 SMARTPHONES	34
1.2 CHEMICAL MARKET OVERVIEW	14	3.2.2 PC UNIT SHIPMENTS	35
1.2.1 PRICING TRENDS	15	3.2.3 SERVERS / IT MARKET	38
1.3 YEAR 2022 IN REVIEW- 2023 TRENDS/ LESSONS	16	3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	39
1.4 MARKET TRENDS	17	3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	40
1.5 SEGMENT VOLUME TRENDS	18	3.3.2 WW FAB EXPANSION DRIVING GROWTH	42
1.6 EHS ISSUES/CONCERNS	19	3.3.3 EQUIPMENT SPENDING TRENDS	43
1.7 ANALYST ASSESSMENT	20	3.3.4 TECHNOLOGY ROADMAPS	44
2 SCOPE, PURPOSE AND METHODOLOGY	21		
2.1 SCOPE	22	3.3.5 FAB INVESTMENT ASSESSMENT	45
2.2 PURPOSE	23	3.4 POLICY & TRADE TRENDS AND IMPACT	46
2.3 METHODOLOGY	24	3.5 SEMICONDUCTOR MATERIALS OVERVIEW	47
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	25	3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODUCTION SCHEDULES?	48
3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	26	3.5.2 LOGISTICS ISSUES EASED DOWN	49
3.1 WORLDWIDE ECONOMY	27	3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 2027	50
3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	29	3.5.4 TECHCET'S MATERIAL FORECAST	51
3.1.2 SEMICONDUCTOR SALES GROWTH	30	4 WET CHEMICAL MARKET TRENDS	52
3.1.3 TAIWAN MONTHLY SALES TRENDS	31	4.1 2023 CHEMICAL CMR REPORT OVERVIEW	53
3.1.4 UNCERTAINTY ABOUNDS ESPECIALLY FOR 2023 - SLOWER TO NEGATIVE SEMICONDUCTOR REVENUE GROWTH EXPECTED	32	4.2 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	54
NEGATIVE SEMICONDUCTOR REVENUE GROWIN EXPECTED	JZ	4.2.1 CHEMICAL EXPANSIONS I	55

4.2.2 CHEMICAL EXPANSION II	56	5.3 WET CHEMICALS MARKET SEGMENT	77
4.2.3 CHEMICAL EXPANSION III	57	5.4 BASIC CHEMICAL FORECAST	78
4.2.4 REGIONAL INVESTMENTS	58	5.5 SUPPLY-CHAIN TRENDS AND HAPPENINGS HIGHLIGHTS	79
4.2.5 CHEMICAL ANALYSIS JAPAN	59	5.6 SULFURIC ACID H2SO4 – SECTION OUTLINE	80
4.3 TECHNICAL DRIVERS / MATERIAL CHANGES AND TRANSITIONS	60	5.6.1 H2SO4 OVERVIEW	81
4.3.1 TECHNOLOGY CHALLENGE	61	5.6.2 ELECTRONIC GRADE H2SO4 5-YEAR VOLUME FORECAST	82
4.4 OVERVIEW OF EHS, LOGISTIC, AND ENERGY ISSUES	62	5.6.3 SULFURIC ACID REVENUE	83
4.4.1 EHS ISSUES	63	5.6.4 MAJOR SUPPLIERS OR DISTRIBUTORS OF H2SO4	84
4.4.2 LOGISTICS ISSUES	64	5.6.5 SULFURIC ACID SUPPLIERS	85
4.4.3 ENERGY COSTS	65	5.6.6 SULFURIC ACID REGIONAL TRENDS	86
4.4.4 WORLD BANK CONCERNS	66	5.6.7 SUPPLY CHAIN- RECYCLE H2SO4	87
4.4.5 WACKER ENERGY REPORT EUROPE (DECEMBER 2022)	67	5.6.8 ELECTRONIC SULFURIC ACID PRODUCTION	88
4.4.6 EU MANY MATERIALS RESULT FROM REFINERY OPERATIONS	69	5.6.9 CHEMTRADE PRESS ANNOUNCEMENTS	89
4.4.7 IMPACT: BASF MAY HALT PRODUCTION	70	5.7 HYDROGEN PEROXIDE H2O2- SECTION OUTLINE	90
4.4.8 ENERGY INTENSIVE	71	5.7.1 H2O2 OVERVIEW	91
5 BASIC CHEMICALS MARKETS & FORECASTS	72	5.7.2 HYDROGEN PEROXIDE 5-YEAR FORECAST	92
5.1 TECHCET ANALYST ASSESSMENT - BASIC CHEMICALS	73	5.7.3 H2O2 REVENUE FORECAST	93
5.1.1 PRICING TRENDS – BASIC WET CHEMICALS	74	5.7.4 H2O2 SUPPLIERS	94
5.1.2 COMMENTS ON FORECAST MODELING AND METHODOLOGY	75	5.7.5 H2O2 REGIONAL TRENDS	95
5.2 MARKET TRENDS	76	5.7.6 SOLVAY H2O2 PROCESS	96
		5.8 PHOSPHORIC ACID H3PO4 – SECTION OUTLINE	97

5.8.1 PHOSPHORIC ACID OVERVIEW	98	5.11.1 IPA OVERVIEW	120
5.8.2 H3PO4 5-YEAR VOLUME FORECAST	99	5.11.2 ELECTRONIC IPA 5-YEAR VOLUME FORECAST	121
5.8.3 PHOSPHORIC ACID REVENUE	100	5.11.3 IPA REVENUE FORECAST	122
5.8.4 H3PO4 MAJOR SUPPLIERS /PRODUCERS	101	5.11.4 IPA SUPPLIERS	123
5.8.5 H3PO4 MARKET DYNAMICS	102	5.11.5 REGIONAL TRENDS	124
5.8.6 HSNE MIXTURE	103	5.11.6 SUPPLY CHAIN DYNAMICS	126
5.9 HYDROFLUORIC ACID HF- SECTION OUTLINE	104	5.12 HCL- SECTION OUTLINE	127
5.9.1 HF ACID OVERVIEW	105	5.12.1 HCL OVERVIEW	128
5.9.2 HF 5-YEAR VOLUME FORECAST	106	5.12.2 HCL VOLUME FORECAST	129
5.9.3 HF REVENUE FORECAST	107	5.12.3 HCL REVENUE	130
5.9.4 MAJOR SUPPLIERS OR DISTRIBUTORS OF HF	108	5.12.4 HCL SUPPLIERS	131
5.9.5 HF REGIONAL SUPPLY	110	5.12.5 REGIONAL TRENDS	132
5.9.6 HF REGIONAL SUPPLY	111	5.12.6 SUPPLY CHAIN DYNAMICS	133
5.9.7 HF SUPPLY-CHAIN DYNAMICS	112	5.13 NH4OH – SECTION OUTLINE	134
5.10 NITRIC ACID HNO3- SECTION OUTLINE	113	5.13.1 NH4OH OVERVIEW	135
5.10.1 NITRIC ACID OVERVIEW	114	5.13.2 NH4OH VOLUME FORECAST	136
5.10.2 HNO3 5-YEAR VOLUME FORECAST	115	5.13.3 NH4OH REVENUE FORECAST	137
5.10.3 HNO3 REVENUE	116	5.13.4 NH4OH SUPPLIERS	138
5.10.4 NITRIC ACID SUPPLIERS	117	5.13.5 REGIONAL TRENDS	139
5.10.5 HNO3 SUPPLY CHAIN	118	5.13.6 SUPPLY CHAIN DYNAMICS	140
5.11 ISOPROPANOL IPA- SECTION OUTLINE	119	5.14 ESTIMATED SUPPLIER RANKING BY REGION	141

5.15 BASIC WET CHEMICALS ASSESSMENT	142	6.2.9 PCMP FUTURE PAST AND PRESENT - MATURE, INNOVATE	
5.15.1 WET CHEMICALS	143	AND EXPAND PCMP	170
6 FORMULATED CLEANS	144	6.2.10 TECHCET ASSESSMENT OF PCMP CLEANING MARKET	171
***************************************		7 SUMMARY	172
6.1 PERRS OVERVIEW – WHAT DO THEY CONSIST OF	145	7.1 YEAR 2023	173
6.1.2 CU PERR RELATIVE VOLUME GROWTH BY DEVICE	146	7.2 2023 CHEMICAL CMR REPORT OVERVIEW	174
6.1.3 AL PERR RELATIVE VOLUME GROWTH BY DEVICE	148	8 APPENDIX	175
6.1.4 PERR TRENDS - LEGACY VS. LEADING EDGE	150	8.1 SUPPLY CHAIN - RECYCLE H2SO4	176
6.1.5 PERR MARKET SHARE	151	8.1.1 SUPPLY CHAIN - SULFURIC ACID PRODUCTION	177
6.1.6 PERR TRENDS - CLEANING COMPLEXITY	152	8.2 SUPPLY CHAIN - CHALLENGE OF PRODUCING H3PO4 - PURITY	178
6.1.7 PERR CHEMISTRY ADDITIVES EXAMPLES	153	8.2.1 SUPPLY CHAIN - CHALLENGE OF PRODUCING H3PO4 -	
6.1.8 PERR MARKET DRIVERS	154	PURITY, CONTINUED	179
6.2 POST CMP CLEANS PCMP- SECTION OUTLINE	156	8.3 SUPPLY CHAIN - OLEUM	180
6.2.1 PCMP CLEANING		8.4 SUPPLY CHAIN - HF PRODUCTION	181
	157	8.4.1 SUPPLY CHAIN - HF SUB-TIER - AHF PRODUCTION	182
6.2.2 PCMP REVENUE FORECAST	158	8.4.2 HF / BOE MARKET	183
6.2.3 PCMP CLEANS BY TYPE	159	8.4.3 SUPPLY CHAIN - HF SUB-TIER FLUORSPAR COST COMPONENTS	184
6.2.4 POST CMP CLEANS BY DEVICE	160	8.5 SUB-TIER SUPPLY CHAIN DEPENDENCIES - IPA PRODUCTION	185
6.2.5 PCMP CLEAN	161	8.5.1 ACETONE IN THE SUPPLY - CHAIN FOR IPA	186
6.2.6 PCMP CLEAN MARKET DYNAMICS	162		
6.2.7 GROWTH DRIVERS OF CMP CLEANS	163		
6.2.8 PCMP CLEANING TRENDS & CHALLENGES	168		

9 SUPPLIER PROFILES

187

ATOTECH
AUECC
AVANTOR
BASF
CHANG CHUN PETROCHEMICAL
CHEMTRADE
...and 40+ more

FIGURES & TABLES

FIGURES		FIGURE 17: OVERVIEW OF ADVANCED LOGIC DEVICE TECHNOLOGY ROADMAP	44
FIGURE 1: REVENUE VS YOY % WAFER STARTS AND REVENUE	14		44
FIGURE 2 TOTAL CHEMICAL REVENUE(\$ M)	17	FIGURE 18: INTEL OHIO PLANT SITE FEB. 2023 AND ARTIST RENDERING (ON BOTTOM)	45
FIGURE 3: CHEMICALS BY VOLUME (M KG)	18	FIGURE 19: EUROPE CHIP EXPANSION UPSIDE	48
FIGURE 4 : GLOBAL ECONOMY AND THE ELECTRONICS SUPPLY CHAIN (2022)	29	FIGURE 20: PORT OF LA	49
FIGURE 5: WORLDWIDE SEMICONDUCTOR SALES	30	FIGURE 21: TECHCET WAFER START FORECAST BY NODE SEGMENTS**	50
FIGURE 6: TECHCET'S TAIWAN SEMICONDUCTOR INDUSTRY		FIGURE 22: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK	51
INDEX (TTSI)*	31	FIGURE 23: INCREASE IN CLEANING STEPS	60
FIGURE 7: 2023 SEMICONDUCTOR INDUSTRY REVENUE GROWTH FORECASTS	32	FIGURE 24: COMPLEXITY OF DEVICE STRUCTURE AND MATERIALS LEAD TO CLEANING COMPLEXITY	61
FIGURE 8: 2022 SEMICONDUCTOR CHIP APPLICATIONS	33	FIGURE 25: PRICE INDEX FORECAST (WORLD BANK GROUP 2023)	66
FIGURE 9: MOBILE PHONE SHIPMENTS WW ESTIMATES	34	FIGURE 26: WACKER RAW MATERIAL PRICING	67
FIGURE 10: WORLDWIDE PC AND TABLET FORECAST	35	FIGURE 27: TOTAL CHEMICAL REVENUE(\$ M)	76
FIGURE 11: ELECTRIFICATION TREND BY WORLD REGION	36	FIGURE 28: 2023 CHEMICAL REVENUE (\$5.6B)	77
FIGURE 12: SEMICONDUCTOR AUTOMOTIVE PRODUCTION	37	FIGURE 29: 2027 CHEMICAL REVENUE (\$7.0 B)	77
FIGURE 13: TSMC PHOENIX INVESTMENT ESTIMATED WILL BE US \$40 B	39	FIGURE 30: BASIC CHEMICAL REVENUE (\$ M)	78
FIGURE 14: CHIP EXPANSIONS 2022-2027 US \$366 B	40	FIGURE 31: H2SO4 VOLUMES (M KG)	82
FIGURE 15: SEMICONDUCTOR CHIP MANUFACTURING REGIONS		FIGURE 32: H2SO4 REVENUES (M \$)	83
OF THE WORLD	42	FIGURE 33: SULFURIC ACID PRODUCER PRICE INDEX US (FRED)	86
FIGURE 16: GLOBAL TOTAL EQUIPMENT SPENDING BY SEGMENT (US\$ B)	43	FIGURE 34: TSMC CIRCULAR ECONOMY ON SULFURIC ACID	87

FIGURES & TABLES

FIGURE 35: H2O2 VOLUMES(M KG)	92	FIGURE 55: COMPLEXITY OF CLEANS	152
FIGURE 36: H2O2 REVENUES (M \$)	93	FIGURE 56: PCMP CHEMISTRY IN ACTION	156
FIGURE 37: H3PO4 VOLUMES M KG	99	FIGURE 57: CMP CLEAN REVENUE (\$ M)	158
FIGURE 38: H3PO4 REVENUE (M \$)	100	FIGURE 58: TOTAL CLEANS BY SLURRY TYPE.	159
FIGURE 39: HF VOLUMES (M KG)	106	FIGURE 59: CMP CLEANS BY DEVICE	160
FIGURE 40: HF REVENUES (M \$)	107	FIGURE 60: PCMP CLEAN MARKET SHARE	161
FIGURE 41: HNO3 VOLUMES (M KG)	115	FIGURE 61: SHIFT IN CMP SCOPE	163
FIGURE 42: HNO3 REVENUES (M \$)	116	FIGURE 62: COMPARISON OF METALS RESISTIVITIES BY DIMENSION	164
FIGURE 43: IPA VOLUME (M KG)	121	FIGURE 63: 14NM VS. 7NM METALLIZATION TECHNIQUES	164
FIGURE 44: IPA REVENUES (M \$)	122	FIGURE 64:DRAM NODE HVM ESTIMATES CMP	165
FIGURE 45: HCL VOLUMES (M KG)	129	FIGURE 65: 3D NAND NODE HVM ESTIMATE CMP	166
FIGURE 46: HCL REVENUES	130	FIGURE 66: STACKING FOR 3D NAND	167
FIGURE 47: NH4OH VOLUMES (M KG)	136	FIGURE 67: TSMC CIRCULAR ECONOMY ON SULFURIC ACID	176
FIGURE 48: H4OH REVENUES (M \$)	137	FIGURE 68: H2SO4 GENERIC PLANT DESIGN	177
FIGURE 49: BASIC CHEMICAL REVENUE (\$ M)	143	FIGURE 69: HF GENERIC PLANT DESIGN	181
FIGURE 50: CU PERR VOLUME (M KG)	146	FIGURE 70: ALF PRODUCTION COST	184
FIGURE 51: CU PERR REVENUE	147	FIGURE 71: IPA PRODUCTION	185
FIGURE 52: AL PERR VOLUMES (M KG)	148		
FIGURE 53: AL PERR REVENUE	149		
FIGURE 54: PERR MARKET SHARE	151		

FIGURES & TABLES

TABLE 1: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	27
TABLE 2: IMF ECONOMIC OUTLOOK*	28
TABLE 3: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES MARKET SPENDING 2022	38
TABLE 4: CHEMICAL EXPANSIONS I	55
TABLE 5: CHEMICAL EXPANSIONS II	56
TABLE 6: CHEMICAL EXPANSIONS III	57
TABLE 7: PRICE TREND HEAT MAP	74
TABLE 8: SULFURIC ACID SUPPLIERS	84
TABLE 9: SULFURIC ACID SUPPLIER ASIA	85
TABLE 10: H2O2 SUPPLIERS	94
TABLE 11: HF SUPPLIERS	108
TABLE 12: HF SUPPLIERS ASIA	109
TABLE 13: IPA SUPPLIERS	123
TABLE 14: IPA US SUPPLY-CHAIN	125
TABLE 15: NH4OH SUPPLIERS	138
TABLE 16: REGIONAL SUPPLIERS EVALUATION	141
TABLE 17: PCMP REVENUE CAGR	158
TABLE 18: SPECIFIC PCMP CLEAN BY TYPE CAGR	159
TABLE 19: PCMP CLEANS BY DEVICE CAGR	160
TABLE 20: PCMP CLEANING CHEMISTRY AND SURFACE COMPATIBILITY	169

2 SCOPE, PURPOSE AND METHODOLOGY

- Scope
- Purpose
- Metrology
- Overview of Other TECHCET CMR™ Reports

2.1 SCOPE

- This report covers the wet chemicals market and supply-chain issues for such used in semiconductor device fabrication. The report
 contains data and analysis from TECHCET's data base and Sr. Analyst experience, as well as that developed from primary and
 secondary market research. For more information on TECHCET Critical materials Reports™ please go do https://TECHCET.com
- Purpose:

This Critical Materials Report (CMR™) provides focused information for supply-chain managers, process integration and R&D directors, as well as business and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments

• Methodology:

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials

2.2 Purpose

- This Critical Materials Report[™] (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.
- Providing current information and actionable content is the intent of the information contained within this report and the quarterly updates.
- As important as the supply side of the equations is the demand requirements of the market in terms of the economic variables, leading edge technology requirements and the wafer start forecast.

2.3 METHODOLOGY

- TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.
- The Methodology this year to include the Process volumes used per technology node and device type. This will be evident in the variations in the graphs from previous reports.
- Based on the regional IDM expansions, problems and variations in device profiles. Separates reports covering the US Expansions and the European chemical requirements have been issued.

A detailed survey of the chemical suppliers and IDM per chemical segments were completed and included in the overall methodology.

2.4 Overview of Other TECHCET CMRTM Reports

 TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2022 can be found at www.techcet.com and are listed in the table below:

TECHCET's Critical Materials Reports™ CMP Consumables (Pads & Slurry) CMP Equipment Ancillaries (Conditioners, Filters, etc.) CVD /ALD Hi K Precursors CVD DIELECTRIC Precursors Equipment Components – Quartz Equipment Components - Silicon Equipment Components - SiC/Ceramics Gases - Electronic Specialty, Bulk & Rare Gases Metal Plating Chemicals 10 Photoresists, Ancillaries & Extension Materials Sputtering Targets Wafers: Silicon, SOI 13 SiC Wafers & Manufacturing 14 Wet Chemicals / Specialty Cleans Special Reports: Impact of US Expansions on Wet Chemicals Supply Chains

