

2023-2024 CMRTM ALD/CVD, HI K AND METAL PRECURSOR

Prepared By:

Jonas Sundavist, PhD

TECHCET CALLC

11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

ANALYST BIOGRAPHY

Jonas Sundqvist, Ph.D. & Assoc. Prof. – Sr. Technology Analyst of TECHCET— covers Electronic Gases and ALD & CVD precursors and related technologies, and the cochair of the Annual Critical Materials Council (CMC) Conference. His over 20 years of work experience includes Group Leader of the Thin-Film Technologies Group at The Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) in Germany, Clean Room Operations Manager for Lund Nano Lab, Lund University in Sweden and Group Leader of the ALD & High-k devices group at Fraunhofer's Center Nanoelectronic Technologies (CNT) in Germany, which included 28nm node work for GLOBALFOUNDRIES Fab1.

Previously, at Infineon Memory Development Centre (MDC), he developed high-k and metal nitride ALD processes, and at Qimonda, he was a materials manager focused on the ALD/CVD precursors supply-chain. He holds a Ph.D. and an M.S. in inorganic chemistry from Uppsala University, Sweden & Institute for Micromanufacturing, Louisiana Teche, USA, a B.S. in electrical and electronics engineering from Lars Kagg, and nine patents and 40 related scientific publications.

Jonas Sundqvist is Assoc. Prof. at Linköping University, on the Scientific Committee for AVS ALD and has co-chaired ALD2016 Dublin Ireland, and the annual EFDS ALD for Industry Workshop in Germany and Co-Chair for the annual CMC Conference.

Jonas Sundqvist, Ph.D. Sr. Technology Analyst of TECHCET, Electronic Gases and ALD & CVD

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY	11	3.1.4 UNCERTAINTY ABOUNDS ESPECIALLY FOR 2023 –	
1.1 REGIONAL TRENDS – METAL PRECURSORS	12	SLOWER TO NEGATIVE SEMICONDUCTOR REVENUE GROWTH EXPECTED	33
1.2 REGIONAL TRENDS – TOTAL PRECURSOR MARKET	13	3.2 CHIPS SALES BY ELECTRONIC GOODS SEGMENT	34
1.3 PRECURSOR MARKET – HISTORICAL AND 5-YEAR FORECAST	14	3.2.1 SMARTPHONES	35
1.4 CVD/ALD METAL & HIGH-K PRECURSOR REVENUE 2021 TO 2027	15	3.2.2 PC UNIT SHIPMENTS	36
1.5 ASSESSMENT- METAL & HIGH-K	16	3.2.3 SERVERS / IT MARKET	39
1.6 SUPPLY-DEMAND FORECAST – WF6 (UNTIL 2023)	17	3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	40
1.7 CVD AND ALD EQUIPMENT MARKET	18	3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	41
1.8 ANALYST ASSESSMENT – HI K & METAL PRECURSORS	19	3.3.2 WW FAB EXPANSION DRIVING GROWTH	43
1.8.1 ANALYST ASSESSMENT - HI K & METAL PRECURSORS, CONTINUE	ED 20	3.3.3 EQUIPMENT SPENDING TRENDS	44
1.8.2 ANALYST ASSESSMENT	21	3.3.4 TECHNOLOGY ROADMAPS	45
2 SCOPE, PURPOSE AND METHODOLOGY	22	3.3.5 FAB INVESTMENT ASSESSMENT	46
2.1 SCOPE	23		40 47
2.2 PURPOSE	24	3.4 POLICY & TRADE TRENDS AND IMPACT	••
2.3 METHODOLOGY	25	3.5 SEMICONDUCTOR MATERIALS OVERVIEW	48
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	26	3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODUCTION SCHEDULES?	49
3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	27	3.5.2 LOGISTICS ISSUES EASED DOWN	50
		3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 2027	51
3.1 WORLDWIDE ECONOMY 3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	28 Y 30	3.5.4 TECHCET'S MATERIAL FORECAST	52
	31	4 PRECURSOR MARKET TRENDS	53
3.1.2 SEMICONDUCTOR SALES GROWTH 3.1.3 TAIWAN MONTHLY SALES TRENDS	31 32	4.1 MARKET TRENDS	54
5.1.5 TAIWAN MONITEL SALLS INCINDS	SΖ	4.1.1 MARKET TRENDS – WAFER STARTS	56

TABLE OF CONTENTS

4.1.2 MARKET TRENDS – WAFER STARTS LOGIC	57	4.6.1 GENERAL TREND LAST DECADE GOING FROM PVD &	
4.1.3 MARKET TRENDS – WAFER STARTS DRAM	58	LPCVD TO PECVD & ALD	77
4.1.4 MARKET TRENDS – WAFER STARTS NAND	59	4.6.2 ADVANCED LOGIC NODE HVM ESTIMATE	78
4.2 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	60	4.6.3 DRAM NODE HVM ESTIMATE	84
4.2.1 WF6 DEMAND DRIVERS	62	4.6.4 3D NAND NODE HVM ESTIMATE	87
4.2.2 WF6 MARKET DEMAND	63	4.6.5 SUMMARY OF OPPORTUNITIES BY DEVICE SEGMENT	92
4.2.3 WF6 MARKET DEMAND, CONTINUED	64	4.7 SEMICONDUCTOR PROCESS & MATERIALS TRENDS	94
4.2.4 WF6 MARKET DEMAND – MO ALD IP FILING	65	4.7.1 ETCH PROCESS BY DEVICE TYPE—ATOMIC LAYER ETCHING ALE	95
4.2.5 WF6 MARKET DEMAND	66	4.7.2 AREA SELECTIVE DEPOSITION	105
4.3 SUPPLY CAPACITY AND DEMAND, INVESTMENTS	67	4.7.3 DIRECTED SELF ASSEMBLY (DSA) AND EUV	106
4.3.1 SUPPLY CAPACITY AND DEMAND, INVESTMENTS: HAFNIUM		4.7.4 DIRECT SELF ASSEMBLY (DSA) AND EUV	107
& ZIRCONIUM	68	4.7.5 2D TRANSITION METAL DICHALCOGENIDES (TMD)	108
4.4 REGIONAL TRENDS – METAL PRECURSORS	69	4.7.6 DRY RESIST FOR EUV	109
4.4.1 REGIONAL TRENDS – METAL PRECURSORS	70	4.7.7 UNDERLAYERS FOR EUV RESIST	112
4.4.2 REGIONAL TRENDS AND DRIVERS	71	4.7.8 OTHER APPLICATIONS – CHAMBER COATINGS BY ALD (Y2O3)	114
4.4.3 REGIONAL TRENDS AND DRIVERS, CONTINUED	72	4.7.9 OTHER APPLICATIONS – OPTICS	115
4.5 CVD AND ALD EQUIPMENT MARKET	73	4.8 EHS AND LOGISTIC ISSUES – ZIRCONIUM AND HAFNIUM	116
4.5.1 WFE FORECAST: ALL TYPES	74	4.8.1 EHS AND LOGISTIC ISSUES – ZIRCONIUM AND HAFNIUM	117
4.5.2 WFE FORECAST: DEPOSITION, ETCH & CLEAN, LITHOGRAPHY,		4.8.2 EHS AND LOGISTIC ISSUES – TITANIUM	118
METROLOGY ETC.	75	4.8.3 EHS AND LOGISTIC ISSUES – TUNGSTEN	119
4.6 TECHNICAL DRIVERS / MATERIAL CHANGES AND TRANSITIONS BY DEVICE TYPE	76		

TABLE OF CONTENTS

4.8.4 EHS AND LOGISTIC ISSUES – TUNGSTEN	120	5.4 SUPPLIER PLANT CLOSURES – NONE REPORTED	142
4.8.5 EHS AND LOGISTIC ISSUES – COBALT	121	5.5 NEW ENTRANTS – DRY RESIST CONSORTIUM	143
4.8.6 EHS AND LOGISTIC ISSUES – RUTHENIUM	122	5.6 PRICING TRENDS	144
4.8.7 GREEN HOUSE GASES FROM SEMICONDUCTOR PRODUCTION	123	5.6.1 PRICING TRENDS – HAFNIUM	145
4.8.8 EUV AND ENERGY	126	6 SUB TIER MATERIAL SUPPLY CHAIN	147
4.8.9 ASSESSING THE ENVIRONMENTAL IMPACT OF ATOMIC LAYER DEPOSITION (ALD) PROCESSES AND PATHWAYS TO LOWER IT	127	6.1 SUB-TIER SUPPLY-CHAIN: INTRODUCTION 6.1.1 SUB-TIER SUPPLY-CHAIN: DISRUPTIONS & CHINA	148 149
4.9 CHANGES IN STANDARD PACKAGING/VALVE TYPES	128	6.2 LOGISTICS	151
4.10 MARKET ASSESSMENT	129	6.2.1 LOGISTICS, CONTINUED	152
5 SEGMENT MARKET STATISTICS & FORECASTS	130	6.3 SUB-TIER SUPPLY-CHAIN "NEW" ENTRANTS - NONE REPORTED	153
5.1 PRECURSOR MARKET – HISTORICAL AND 5-YEAR FORECAST	131	6.4 SUB-TIER SUPPLY-CHAIN PLANTS UPDATES-NEW – NONE REPORTED	154
5.1.1 CVD/ALD METAL & HIGH-K PRECURSOR REVENUE 2021 TO 2027	132	6.5 SUB-TIER SUPPLY-CHAIN TECHCET ANALYST ASSESSMENT	155
5.1.2 SUPPLY-DEMAND FORECAST – WF6 (UNTIL 2023)	133	7 SUPPLIER PROFILES	156
5.1.3 ASSESSMENT- METAL & HIGH-K	134	ADEKA CORPORATION	
5.2 M&A ACTIVITIES	135	AIR LIQUIDE (MAKER, PURIFIER, SUPPLIER) AZMAX CO., LTD	
5.2.1 M&A ACTIVITIES – MERCK & MECARO	136	CITY CHEMICAL LLC	
5.3 NEW PLANTS	137	DNF CO., LTD and 20+ more	
5.3.1 NEW PLANTS	138	dnd zo+ more	
5.3.2 NEW PLANTS	139		
5.3.3 NEW PLANTS	140		
5.3.4 NEW PLANTS	141		

FIGURES		FIGURE 18: SEMICONDUCTOR CHIP MANUFACTURING REGIONS OF THE WORLD	43
FIGURE1: METAL PRECURSORS MARKET SHARES 2022	12	FIGURE 19: GLOBAL TOTAL EQUIPMENT SPENDING BY SEGMENT (US\$ B)	44
FIGURE 2: TOTAL PRECURSOR MARKETS REGIONAL 2022	13	FIGURE 20: OVERVIEW OF ADVANCED LOGIC DEVICE	7-7
FIGURE 3: TOTAL PRECURSOR MARKET, M USD	14	TECHNOLOGY ROADMAP	45
FIGURE 4: CVD/ALD METAL & HIGH-K PRECURSORS 2021 TO 2027	15	FIGURE 21: INTEL OHIO PLANT SITE FEB. 2023 AND ARTIST RENDERING	
FIGURE 5: WF6 SUPPLY VS. DEMAND THROUGH 2027	17	(ON BOTTOM)	46
FIGURE 6: CVD AND ALD TOTAL EQUIPMENT MARKET 2022		FIGURE 22: EUROPE CHIP EXPANSION UPSIDE	49
USD 17-18 BILLION	18	FIGURE 23: PORT OF LA	50
FIGURE 7: GLOBAL ECONOMY AND THE ELECTRONICS	22	FIGURE 24: TECHCET WAFER START FORECAST BY NODE SEGMENTS**	51
SUPPLY CHAIN (2022)	30	FIGURE 25: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK	52
FIGURE 8: WORLDWIDE SEMICONDUCTOR SALES	31	FIGURE 26: FORECASTS – WAFER STARTS 2021 TO 2027	56
FIGURE 9: TECHCET'S TAIWAN SEMICONDUCTOR INDUSTRY I NDEX (TTSI)*	32	FIGURE 27: FORECASTS – WAFER STARTS LOGIC 300 MM	57
FIGURE 10: 2023 SEMICONDUCTOR INDUSTRY REVENUE		FIGURE 28: FORECASTS – WAFER STARTS DRAM 300 MM	58
GROWTH FORECASTS	33	FIGURE 29: FORECASTS – WAFER STARTS NAND 300 MM	59
FIGURE 11: 2022 SEMICONDUCTOR CHIP APPLICATIONS	34	FIGURE 30: 3DNAND MARKET SHARE 2022	62
FIGURE 12: MOBILE PHONE SHIPMENTS WW ESTIMATES	35	FIGURE 31: 3DNAND STRUCTURE	63
FIGURE 13: WORLDWIDE PC AND TABLET FORECAST	36	FIGURE 32: MO PRECURSORS	64
FIGURE 14: ELECTRIFICATION TREND BY WORLD REGION	37	FIGURE 33: PATENT FAMILIES FILED FOR MOLYBDENUM ALD IN	
FIGURE 15: SEMICONDUCTOR AUTOMOTIVE PRODUCTION	38	THE MEMORY SPACE.	65
FIGURE 16: TSMC PHOENIX INVESTMENT ESTIMATED WILL BE US \$40 B	40	FIGURE 34: WAFER START FORECAST SHOWING TWO TIMING SCENARIOS WHERE MO COULD BE INTRODUCED	66
FIGURE 17: CHIP EXPANSIONS 2022-2027 US\$366 B	41	COL. II III CO CO CES DE II III CO CO CES	00

FIGURE 35: ZIRCONIUM METAL DEMAND 2021 1.6 MILLION TONNES	68	FIGURE 53A: FINFET TO GAA TRANSISTOR DIAGRAMS SHOWING	
FIGURE 36: HAFNIUM METAL DEMAND 2021 78 TONNES	68	SELECTIVE ETCHING IS NEEDED TO ADDRESS DEVICE COMPLEXITY.	95
FIGURE 37: METAL PRECURSORS MARKET SHARES 2022	70	FIGURE 53B: ALE PROCESS CYCLE	95
FIGURE 38: CVD AND ALD TOTAL EQUIPMENT MARKET 2022 USD 17-18 BILLION	73	FIGURE 54: PERIOD TABLE INDICATING CANDIDATES FOR ALE (ISOTROPIC ETCHING)	96
FIGURE 39: SEMI 2022 SEMICONDUCTOR EQUIPMENT FORECAST	74	FIGURE 55: APPLICATION OF ALE (ISOTROPIC ETCH)	97
FIGURE 40: 2022 TECHINSIGHTS WFE SPENDING (TOP) AND 2022 GARTNER WFE SPENDING PER NODE (BOTTOM)	75	FIGURE 56: ALD AND ALE COMBO PROCESS	98
FIGURE 41: 3D DEVICE ARCHITECTURES	76	FIGURE 57: PLASMA AND THERMAL ALE PROCESSES	99
FIGURE 42: LOGIC TECHNOLOGY NODE ROADMAP FOR LEADING IDMS	77	FIGURE 58: LAM ALE PROCESS	100
FIGURE 43: SAMSUNG START 3 NM PILOT RAMP USING GAA-FET	//	FIGURE 59: ALD / ALE PROCESS ROADMAP	101
TECHNOLOGY JUNE 2022	79	FIGURE 60: ALE PATENT ACTIVITY BY COMPANY THROUGH 2022	102
FIGURE 44: IMEC 2022 LOGIC ROADMAP	80	FIGURE 61: AREA SELECTIVE SIN DEPOSITION BY ALD (AVS ASD2022)	105
FIGURE 45: SCALING AND LITHOGRAPHY TRENDS – A HIGH COST IN CAPITAL EXPENDITURE. ENERGY AND EMISSIONS	81	FIGURE 62: DSA AND EUS PROCESSES	106
FIGURE 46: APPLIED MATERIALS CENTURA PATTERN SHAPING CLUSTER	82	FIGURE 63: RESIST RECTIFICATION WITH DSA	107
FIGURE 47: DRAM TECHNOLOGY ROADMAP FOR LEADING IDMS	84	FIGURE 64: TEM AND ARTIST RENDERING OF MONOLAYER CHANNEL FORMATION	108
FIGURE 48: IP FILING IN THE FIELD OF 3DRAM IS ACCELERATING	85	FIGURE 65: EUV LITHOGRAPHY ENABLING GATE STRUCTURES AND	
FIGURE 49: NAND TECHNOLOGY ROADMAP FOR LEADING IDMS	87	PITCH SCALING	109
FIGURE 50: PATHWAYS FOR CONTINUED 3D NAND SCALING	88	FIGURE 66: DRY RESIST FOR EUV SEM IMAGE	110
FIGURE 51: 3DNAND STACK TRENDS FROM < 100L TO 4 STACKS	89	FIGURE 67: SPIN ON CARBON (SOC) DIELECTRIC FOR EUV METAL	
FIGURE 52: MEMORY STACK CHALLENGES FOR V-NAND	90	OXIDE RESISTS PATTERNS AFTER LITHO	111

FIGURE 68: UNDERLAYER (DIELECTRIC) HARDMASKS TRENDS FOR NIGH NA EUV	112	TABLES	
	113	TABLE 1: TOTAL PRECURSOR MARKETS BY REGION (US\$ M)	13
FIGURE 69: SPIN ON PRIMER (SOC) VS. HMDS PRIMER		TABLE 2: 2017 TO 2027 5-YEAR CAGRS	14
FIGURE 70: Y2O3 ALD VS. SPRAY COATINGS	114	TABLE 3: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	28
FIGURE 71: GREENHOUSE GAS CONTRIBUTIONS OF CHIP FAB MATERIALS AND EQUIPMENT	123	TABLE 4: IMF ECONOMIC OUTLOOK*	29
FIGURE 72: ENVIRONMENTAL IMPACT (GWP) OF VARIOUS PROCESSES AND GASES	124	TABLE 5: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES MARKET SPENDING 2022	39
FIGURE 73: CO2EQ OUTPUT FROM ETCH GASES (SOURCE: IMEC)	125	TABLE 6: PRECURSOR USAGE OF LEADING IDMS	69
FIGURE 74: TOTAL EMISSIONS AND ENERGY USE PROJECTION PER		TABLE 7: REGIONAL PRECURSOR MARKETS	71
LOGIC NODE	126	TABLE 8: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE	
FIGURE 75: ENVIRONMENTAL IMPACT OF ALD	127	AND MATERIAL FOR LOGIC DEVICES	83
FIGURE 76: SEGMENTATION OF THE AMPOULE FLEET 2020	128	TABLE 9: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE AND MATERIAL FOR DRAM	86
FIGURE 77: TOTAL PRECURSOR MARKET, M USD	131		00
FIGURE 78: CVD/ALD METAL & HIGH-K PRECURSORS 2021 TO 2027	132	TABLE 10: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE AND MATERIAL FOR 3DNAND	91
FIGURE 79: WF6 SUPPLY VS. DEMAND THROUGH 2027	133	TABLE 11: GAS TRENDS AND OPPORTUNITIES BY DEVICE TYPE	92
FIGURE 80: WHAT IS EUV DRY RESIST?	143	TABLE 12: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE TYPE	
FIGURE 81: HAFNIUM METAL SPOT PRICING	145	AND MATERIAL	93
FIGURE 82: TYPICAL NON-HALIDE LIGANDS USED FOR ALD PRECURSORS	148	TABLE 13: PRECURSOR 5-YEAR CAGR COMPARISON	131
FIGURE 83: EXAMPLES OF PRECURSORS SUPPLIED BY SHIP	151	TABLE 14: ZIRCONIUM MINING PRODUCTION AND RESERVES	146
FIGURE 84: OCEAN CONTAINER PRICE INDEX - JULY '20 TO MARCH '23	152	TABLE 15: WORLDWIDE TUNGSTEN PRODUCTION AND RESERVES	149
		TABLE 16: ZIRCONIUM MINING	150

TABLES		TABLE 18: ZIRCONIUM MINING PRODUCTION AND RESERVES	15
TABLE 1: DIELECTRIC PRECURSOR REVENUES BY REGION (U	JS\$ M) 14	TABLE 19: WORLDWIDE TUNGSTEN PRODUCTION AND RESERVES	15
TABLE 2: TOTAL PRECURSOR MARKETS BY REGION (US\$ M)	15	TABLE 20: ZIRCONIUM MINING	16
TABLE 3: 2017 TO 2027 5-YEAR CAGRS	16		
TABLE 4: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	* 32		
TABLE 5: IMF ECONOMIC OUTLOOK*	33		
TABLE 6: DATA CENTER SYSTEMS AND COMMUNICATION S MARKET SPENDING 2022	ERVICES 43		
TABLE 7: PRECURSOR USAGE OF LEADING IDMS	73		
TABLE 8: DIELECTRIC PRECURSOR MARKET SIZE BY REGION	75		
TABLE 9: TOTAL PRECURSOR MARKET SIZE BY REGION	76		
TABLE 10: REGIONAL PRECURSOR MARKETS	77		
TABLE 11: REGIONAL WAFER MARKETS, CONTINUED	78		
TABLE 12: OVERVIEW OF DEPOSITION PROCESSES BY DEVICAND MATERIAL FOR LOGIC DEVICES	CE TYPE 89		
TABLE 13: OVERVIEW OF DEPOSITION PROCESSES BY DEVIC AND MATERIAL FOR DRAM	CE TYPE 92		
TABLE 14: OVERVIEW OF DEPOSITION PROCESSES BY DEVIC AND MATERIAL FOR 3DNAND	CE TYPE 97		
TABLE 15: GAS TRENDS AND OPPORTUNITIES BY DEVICE TYPE	PE 98		
TABLE 16: OVERVIEW OF DEPOSITION PROCESSES BY DEVICE AND MATERIAL	CE TYPE		
TABLE 17: PRECURSOR 5-YEAR CAGR COMPARISON	138		

2 SCOPE, PURPOSE AND METHODOLOGY

2.1 SCOPE

- This report provides market and technical trend information on inorganic gases and liquid CVD/ALD precursors (metal, metal oxide, high K, dielectric and SOD materials). For the last 20 years, there have been many research papers and patents published regarding ALD and CVD precursors specifically for the semiconductor industry. This report includes detail on the development path and roadmaps for new precursors and any current EHS and regulatory hurdles for these materials to enter into high volume manufacturing (HVM).
- Forecasts are provided on precursors of all types, with a focus is on the leading-edge front end of the line insulating and conductive materials, including high K, metal electrode, interconnect metallization, sacrificial layers, low-k dielectrics, hard masks, mandrel, and etch stop layers. These process areas are of interest because of the high growth potential associated with leading-edge logic <45 nm, 28 nm to 10/7 nm nodes, and the future 5 & 3 nm nodes, as well as advanced DRAM and 3DNAND volatile and non-volatile memories.

2.2 PURPOSE

• This Critical Materials ReportTM (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.

2.3 METHODOLOGY

• TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

2.4 Overview of Other TECHCET CMRTM Reports

 TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports to be published in 2022 can be found at www.techcet.com and are listed in the table below:

TECHCET's Critical Materials Reports™

- 1 CMP Consumables (Pads & Slurry)
- 2 CMP Equipment Ancillaries (Conditioners, Filters, etc.)
- 3 CVD /ALD Hi K Precursors
- 4 CVD DIELECTRIC Precursors
- 5 Equipment Components Quartz
- 6 Equipment Components Silicon
- 7 Equipment Components SiC/Ceramics
- 8 Gases Electronic Specialty, Bulk & Rare Gases
- 9 Metal Plating Chemicals
- 10 Photoresists, Ancillaries & Extension Materials
- 11 Sputtering Targets
- 12 Wafers: Silicon, SOI
- 3 SiC Wafers & Manufacturing
- 14 Wet Chemicals / Specialty Cleans
- Special Reports: Impact of US Expansions on Wet Chemicals Supply Chains

