

2023 – 2024 CRITICAL MATERIALS REPORT™ WAFER LEVEL METAL PLATING CHEMICALS

FOR FRONT END SEMICONDUCTOR MANUFACTURING AND ADVANCED PACKAGING APPLICATIONS

Prepared By: Karey Holland, PhD

With contributions from

Terry Francis, Dan Tracy, and Lita Shon-Roy

TECHCET CALLC

11622 El Camino Real #100 San Diego, CA 92130 www.TECHCET.com info@TECHCET.com

RESEARCH METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers, and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

READER'S NOTE

This report represents the interpretation and analysis of information generally available to the public or released by responsible agencies or individuals. Data was obtained from sources considered reliable. However, accuracy or completeness is not guaranteed.

ANALYST BIOGRAPHY

KARFY HOLLAND

Karey Holland, Ph.D. is TECHCET's Chief Strategist & Sr. Technical Analyst and is a co-founder of TECHCET. Dr. Holland has led advances in interconnect technologies, CMP, photolithography, vacuum technology, reactive ion etch, metrology, and metals and dielectric depositions for over 35 years. She specialized in advanced semiconductor transistor fabrication evolutions for the next 10 years. She was previously CTO of Revasum, a SiC polish process and equipment supplier. Before joining Revasum, she was Global Market Sector Manager Semiconductor Process Technology at Edwards Vacuum, VP Process Technology at Mega Fluid Systems, Senior Manager Technology Roadmap at FEI, CTO of NexPlanar, member of the Board of Directors at Nova Measuring Instruments, VP Technology at Thomas West, and CTO and VP of Process Technology IPEC-Westech / SpeedFam-IPEC. Her career began in process engineering at IBM where she managed the first 248nm DUV lithography technology development team, and also developed interconnect integration for 4 and 16 Mb DRAMs which were the first chips in the world to use CMP for all interconnect dielectrics. Dr. Holland holds a Ph.D. in electro-analytical chemistry from Pennsylvania State University, a M.S. in analytical chemistry from Purdue University, and a B.A. in chemistry from Albion College.

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY	9	3.2.1 SMARTPHONES	30
1.1 EXECUTIVE SUMMARY	10	3.2.2 PC UNIT SHIPMENTS	31
1.2 ADVANCED PACKAGING PER WAFER STARTS	11	3.2.3 SERVERS / IT MARKET	34
1.3 DEVICE DEMAND DRIVERS - LOGIC	12	3.3 SEMICONDUCTOR FABRICATION GROWTH & EXPANSION	35
1.4 CU PLATING FORECAST FOR CU INTERCONNECTS AND		3.3.1 FAB EXPANSION ANNOUNCEMENT SUMMARY	36
ADVANCED PACKAGING	13	3.3.2 WW FAB EXPANSION DRIVING GROWTH	38
1.5 MARKET SHARES	14	3.3.3 EQUIPMENT SPENDING TRENDS	39
1.6 SUPPLIER ACTIVITIES – VARIOUS ANNOUNCEMENTS	15	3.3.4 TECHNOLOGY ROADMAPS	40
1.7 RISK FACTORS	16	3.3.5 FAB INVESTMENT ASSESSMENT	41
1.8 ANALYST ASSESSMENT	17	3.4 POLICY & TRADE TRENDS AND IMPACT	42
		3.5 SEMICONDUCTOR MATERIALS OUTLOOK	43
2 SCOPE, PURPOSE AND METHODOLOGY	18	3.5.1 COULD MATERIALS CAPACITY LIMIT CHIP PRODUCTION	
2.1 SCOPE	19	SCHEDULES?	44
2.2 PURPOSE	20	3.5.2 LOGISTICS ISSUES EASED DOWN	45
2.3 METHODOLOGY	21	3.5.3 TECHCET WAFER STARTS FORECAST THROUGH 2027	46
2.4 OVERVIEW OF OTHER TECHCET CMR™ REPORTS	22	3.5.4 TECHCET'S MATERIAL FORECAST	47
3 SEMICONDUCTOR INDUSTRY MARKET STATUS & OUTLOOK	23	4 METAL CHEMICALS MARKET BY SEGMENT	48
3.1 WORLDWIDE ECONOMY	24	4.1 DEFINITIONS	49
3.1.1 SEMICONDUCTOR INDUSTRIES TIES TO THE GLOBAL ECONOMY	26	4.1.1 DEFINITIONS, CONTINUED	50
3.1.2 SEMICONDUCTOR SALES GROWTH	27	4.2 METAL PLATING CHEMICALS MARKET OVERVIEW	51
3.1.3 TAIWAN OUTSOURCE MANUFACTURER MONTHLY SALES TRENDS	28	4.2.1 OVERVIEW – CU ADVANCED PACKAGING AND CHIP	
3.2 CHIPS SALES BY ELECTRONIC GOODS SEGMENT	29	INTERCONNECTS METALLIZATION	52
		4.2.2 OVERVIEW - PLATING MARKET TRANSITIONAL TRENDS	53

TABLE OF CONTENTS

4.3 ADVANCED PACKAGING METALLIZATION –		5.3.4 LOGIC METALLIZATION ROADMAP	77
MARKET DRIVERS	54	5.3.5 ADV LOGIC BURIED POWER RAIL	79
4.3.1 ADVANCED PACKAGING - ADDITIVES FOR CU		5.3.6 TECHNOLOGY ROADMAP: DRAM WITH MO OR RU	80
PLATING REVENUE	55	5.3.7 PRECURSOR TECHNOLOGY ROADMAP: 3D NAND USING MO	
4.3.2 ADVANCED PACKAGING – COPPER CHEMICALS REVENUE	56	OR RU	82
4.3.3 ADVANCED PACKAGING ADDITIVE VOLUMES	57	5.3.8 EXAMPLE OF LOGIC PROCESS FLOW 20 NM TO 32 NM	
4.3.4 OTHER PLATING MATERIALS FOR ADVANCED PACKAGING	58	LOGIC PVD	84
4.3.5 SN / SNAG PLATING	59	5.3.9 TECHNICAL REQUIREMENTS SUMMARY 1/2	85
4.4 CHIP INTERCONNECTS GROWTH TRENDS	61		
4.4.1 CHIP INTERCONNECTS GROWTH DRIVERS	62	6 COMPETITIVE LANDSCAPE	87
4.4.2 CHIP INTERCONNECTS CU PLATING REVENUES	63	6.1 TOTAL ADVANCED PACKAGING AND INTERCONNECTS	
4.4.3 CHIP INTERCONNECTS ADDITIVE VOLUMES	64	MARKET SHARES	88
4.5 MINE LOCATIONS FOR METALS IN PLATING CHEMICALS	64	6.2 OEM MARKET SHARE – PLATING EQUIPMENT	89
4.6 POSSIBLE CHOKE POINTS FOR METALS USED IN IC PLATING	66	6.3 MARKET SHARE BY APPLICATION – CU PLATING FOR	
4.7 FUTURE POSSIBLE DEMAND PRICE PRESSURES	67	ADVANCED PACKAGING	90
		6.4 REGIONAL PLAYERS AND OTHERS	91
5 TECHNICAL TRENDS	68	6.5 M&A ACTIVITY	92
5.1 CHEMISTRIES USE FOR SEMICONDUCTOR METAL PLATING	69		
5.2 PACKAGING TECH TRENDS	70	7 ANALYST ASSESSMENT	93
5.2.1 PACKAGING TECHNICAL CHALLENGES	71	7.1 ADVANCED METAL PLATING APPLICATIONS MARKET ASSESSMENT	94
5.3 TECH TRENDS	72	ASSESSIVIEINI	
5.3.1 MARKET DRIVES TECHNOLOGY TRENDS	73		
5.3.2 ADV LOGIC INTERCONNECT WIRING TECHNOLOGY EVOLUTION	74		
5.3.3 CU INTERCONNECTS QUALIFICATION REQUIREMENTS	76		

TABLE OF CONTENTS

8 SUPPLIER PROFILES ATOTECH BASF DUPONT INCHEON CHEMICAL COMPANY ISHIHARA CHEMICAL/UNICON JCU Corporation MACDERMID ENTHONE INDUSTRIAL SOLUTIONS MITSUYA MOSES LAKE INDUSTRIES SHANGHAI SINYANG SOULBRAIN UYEMURA

9 APPENDIX A: PACKAGING TECH TRENDS	158
9.1 TECHNOLOGY CHALLENGE	159
9.1.1 METAL CLEANINGS CHALLENGE	160
9.1.2 MARKET DYNAMIC	161
9.1.3 IDM – WAFER LEVEL PLATING	162
9.1.4 MARKET DRIVERS OF ADVANCED PACKAGING APPLICATIONS	163
9.1.5 TECH TRENDS – RDL	164
9.1.6 INTERPOSERS (NOT WLPS)	166
9.1.7 TSV FILLING 2.5-3D	168
9.1.8 PACKAGING ELECTROPLATING REQUIREMENTS	169

95

FIGURES & TABLES

FIGURES		FIGURE 17: REVENUE FORECAST - GLOBAL TOTAL EQUIPMENT	
FIGURE 1: PLATING MATERIALS FOR ADVANCED PACKAGING		SPENDING BY SEGMENT (USUS\$ B)	39
AND INTERCONNECT REVENUES (\$M'S)	10	FIGURE 18: OVERVIEW OF ADVANCED LOGIC DEVICE	40
FIGURE 2: WAFERS/YR & % OF PACKAGING THAT IS ADVANCED		TECHNOLOGY ROADMAP	40
PACKAGING (AP)	11	FIGURE 19: INTEL OHIO PLANT SITE FEB. 2023 AND ARTIST	41
FIGURE 3: WAFER STARTS FORECAST - ADV. LOGIC DEVICE	12	RENDERING (ON BOTTOM)	41
FIGURE 4: COPPER PLATING CHEMICALS REVENUES (\$M'S)		FIGURE 20: EUROPE CHIP EXPANSION UPSIDE	44
FOR ADVANCED PACKAGING & DEVICE CU INTERCONNECTS	13	FIGURE 21: PORT OF LA	45
FIGURE 5: TOTAL PLATING MARKET SHARES FOR ADVANCED		FIGURE 22: TECHCET WAFER START FORECAST BY NODE SEGMENTS**	46
PACKAGING AND SEMICONDUCTOR DEVICE MFG. 2022	14	FIGURE 23: GLOBAL SEMICONDUCTOR MATERIALS OUTLOOK	47
FIGURE 6: GLOBAL ECONOMY AND THE ELECTRONICS		FIGURE 24: PACKAGING METALLIZATION APPLICATIONS	49
SUPPLY CHAIN (2022)	26	FIGURE 25: USE OF SILICON INTERPOSER	50
FIGURE 7: WORLDWIDE SEMICONDUCTOR SALES	27	FIGURE 26: VERSIONS OF TSV & PROCESS FLOW EXAMPLE	50
FIGURE 8: SEMICONDUCTOR INDUSTRY TREND INDICATOR –	00	FIGURE 27: PLATING MATERIALS FOR ADVANCED PACKAGING AND	
TOP TAIWAN COMPANY REVENUES	28	DEVICE CU INTERCONNECT REVENUES (\$M'S)	51
FIGURE 9: 2022 SEMICONDUCTOR CHIP APPLICATIONS	29	FIGURE 28: 5-YEAR REVENUE FORECAST – CU PLATING CHEMICALS	52
FIGURE 10: MOBILE PHONE SHIPMENTS WW ESTIMATES	30	FIGURE 29: WAFERS/YR & % OF PACKAGING THAT IS	
FIGURE 11: WORLDWIDE PC AND TABLET FORECAST	31	ADVANCED PACKAGING	54
FIGURE 12: ELECTRIFICATION TREND BY WORLD REGION	32	FIGURE 30: REVENUE FORECAST – CU PLATING	
FIGURE 13: SEMICONDUCTOR AUTOMOTIVE PRODUCTION	33	ADVANCED PACKAGING	55
FIGURE 14: TSMC PHOENIX INVESTMENT ESTIMATED WILL		FIGURE 31: REVENUE FORECAST - CU PILLAR & CU RDL SEGMENTED	56
BE US US\$40 B	35	FIGURE 32: ADV. PACKAGING CU CUSO4 AMOUNT DEMAND FORECAST	57
FIGURE 15: CHIP EXPANSIONS 2022-2027 US\$500 B	36	FIGURE 33: ADV. PACKAGING CU/VMS VOLUME DEMAND FORECAST	
FIGURE 16: SEMICONDUCTOR CHIP MANUFACTURING REGIONS		ADV. PACKAGING CU PLATING ADDITIVES	57
OF THE WORLD	38	FIGURE 34: MATERIALS STACK USING CU PILLAR (< 40 UM PITCH)	58

FIGURES & TABLES

FIGURE 35: SN AND SNAG PLATING REVENUE	59	FIGURE 56: ADVANCED PACKAGING MARKET DRIVERS AND	
FIGURE 36: REVENUE FORECAST - NICKEL PLATING REVENUE	60	APPLICATIONS	101
FIGURE 37: WAFER START FORECAST - ADV LOGIC DEVICE		FIGURE 57: COMPARISON WITH DAMASCENE- TYPE RDL	103
GROWTH FORECAST	61	FIGURE 58: USE OF SILICON INTERPOSER	104
FIGURE 38: METAL PLATING WAFER PASSES FORECAST	62	FIGURE 59: APPLE EXAMPLE INTERPOSERS	105
FIGURE 39: WW COPPER INTERCONNECT PLATING REVENUE		FIGURE 60: TSV PROCESS FLOW EXAMPLE	106
FORECAST ESTIMATES	63	TABLES	
FIGURE 40: INTERCONNECT CU PLATING CHEMICAL AMOUNT		TABLE 1: GLOBAL GDP AND SEMICONDUCTOR REVENUES*	24
DEMAND FORECAST	64	TABLE 2: IMF ECONOMIC OUTLOOK*	25
FIGURE 41: INTERCONNECT CU PLATING ADDITIVES CHEMICAL VOLUME DEMAND FORECAST	64	TABLE 3: DATA CENTER SYSTEMS AND COMMUNICATION SERVICES MARKET SPENDING 2022	34
FIGURE 42: KEY TRENDS IN ADVANCED PACKAGING	70	TABLE 4: IRDS 2022 MORE MOORE INTERCONNECT ROADMAP	
FIGURE 43: CHALLENGES OF ELECTROPLATING VIA FILL	71	(2023 NOT YET RELEASED)	75
FIGURE 44: METAL INTERCONNECTS BY LOGIC NODE	73	TABLE 5: LOGIC DEVICE ROADMAP FOR METALS	77
FIGURE 45: INTERCONNECT METAL COMPARISON BY RESISTIVITY	74	TABLE 6: METALS REQUIRED FOR DEVICE FEATURES	78
FIGURE 46: CU CHIP INTERCONNECTS QUALIFICATION	76	TABLE 7: DRAM USE OF MO OR RU PRESENT & FUTURE	80
FIGURE 47: LEADING EDGE LOGIC POWER RAIL SCHEMES	79	TABLE 8: GENERAL PROCESS FLOW ADVANCED DRAM	81
FIGURE 48: DRAM STRUCTURE	80	TABLE 9: 3D NAND MATERIAL CHANGES PRESENT & FUTURE	82
FIGURE 49: 3D NAND STRUCTURE FIGURE 50: TOTAL PLATING FOR ADV. PACKAGING AND	82	Table 10: number of Stacks (\$) & Layers (L) per generation of 3Dnand – Some are estimates for the future	83
CU INTERCONNECT DEVICE MANUFACTURING 2022	88	TABLE 11: EXAMPLE OF LOGIC PROCESS FLOW 20 NM TO 32 NM	
FIGURE 51: PLATING EQUIPMENT OEM MARKET SHARES % 2022	89	LOGIC PVD	84
FIGURE 52: PLATING CHEMICAL SUPPLIER FOR INTERCONNECTS		TABLE 12: TECHNICAL REQUIREMENTS SUMMARY	85
AND ADVANCED PACKAGING APPLICATIONS	90	TABLE 13: TECHNICAL REQUIREMENTS SUMMARY	86
FIGURE 53: CLEANING COMPLEXITY CANNIBALIZATION TREND	97	TABLE 14: REGIONAL PLAYERS – MARKET LEADER AND "OTHERS"	91
FIGURE 54: OSATS PACKAGING BUSINESS	99	TABLE 15: CU PACKAGING APPLICATIONS AND REQUIREMENTS	108
FIGURE 55: WAFER LEVEL PLATING	100		

2 SCOPE, PURPOSE AND METHODOLOGY

2.1 SCOPE

- This report covers the Metal Chemicals market trends and supply-chain as it applied to **Advanced Packaging** (wafer level) and **Semiconductor Device Manufacturing** (damascene process).
- Included are forecasts for copper plating and additives, market shares, technical trends, and supplier profiles. Also included in the appendix is a supplier product comparison table of publicly available information on plating products used for advanced packaging.
- The report contains data and analysis from TECHCET's data base and Sr. Analyst experience, as well as that developed from primary and secondary market research. For more information on TECHCET Critical materials Reports[™] please go to https://TECHCET.com

2.2 PURPOSE

- This Critical Materials Report™ (CMR) provides focused information for supply-chain managers, process integration and R&D directors, as well as business development managers, and financial analysts. The report covers information about key suppliers, issues/trends in the material supply chain, estimates on supplier market share, and forecast for the material segments.
- Providing current information and actionable content is the intent of the information contained within this report and the quarterly updates.
- As important as the supply side of the equations is the demand requirements of the market in terms of the economic variables, leading edge technology requirements and the wafer start forecast.

2.3 METHODOLOGY

TECHCET employs subject matter experts having first-hand experience within the industries which they analyze. Most of TECHCET's analysts have over 25 years of direct and relevant experience in their field. Our analysts survey the commercial and technical staff of IC manufacturers and their suppliers and conduct extensive research of literature and commerce statistics to ascertain the current and future market environment and global supply risks. Combining this data with TECHCET's proprietary, quantitative wafer forecast results in a viable long-term market forecast for a variety of process materials.

2.4 OVERVIEW OF OTHER TECHCET CMRTM REPORTS

TECHCET produces electronic material supply chain reports each year as one of its functions for the Critical Materials Council. Reports published in 2023 can be found at www.techcet.com and are listed in the table below:

	TECHCET's Critical Materials Reports™		
1	CMP Consumables (Pads & Slurry)		
2	CMP Equipment Ancillaries (Conditioners, Filters, etc.)		
3	CVD /ALD Hi K Precursors		
4	CVD DIELECTRIC Precursors		
5	Equipment Components — Quartz		
6	Equipment Components — Silicon		
7	Equipment Components — SiC/Ceramics		
8	Gases - Electronic Specialty, Bulk & Rare Gases		
9	Metal Plating Chemicals		
10	Photoresists, Ancillaries & Extension Materials		
11	Sputtering Targets		
12	Wafers: Silicon, SOI		
13	SiC Wafers & Manufacturing		
14	Wet Chemicals / Specialty Cleans		

